
 

 



Messaoud BOUKEZZATA 

Doctorat de l’Université Paul Sabatier (Toulouse III). 
Professeur d’Enseignement Supérieur à l’Université de 

Constantine 1 

 

 

 

 

    MÉTHODES  ET  TECHNIQUES  

DE MESURES ÉLECTRIQUES 

 

 

3ème Édition 

 

 

 

OFFICE DES PUBLICATIONS UNIVERSITAIRES 

1, Place centrale de Ben Aknoun (Alger) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©   OFFICE DES PUBLICATIONS UNIVERSITAIRES : 06 -2003 

EDITION : 02.06.4219 

I.S.B.N :9961.0.0611.9 

Dépôt légal : 1078/2003 

  



Ce cours est essentiellement destiné à une large famille d’étudiants en graduation 
des diverses filières scientifiques et techniques. Il représente un outil pédagogique 
valable et un document de première nécessité qui peut apporter un soutien non 
négligeable aux étudiants qui souffrent de manque d’ouvrages sur le marché national 
et au niveau des bibliothèques universitaires et voire même des librairies privées. 

Plus spécialement, c’est un cours de base enseigné dans les premières années du 
cursus universitaire des sciences techniques et technologiques dans toutes les 
grandes écoles et les universités algériennes. 

En effet, durant toute la période du système classique, il concernait déjà, en premier 
lieu, les étudiants de troisième année du cycle long (les ingénieurs) des spécialités 
d’Électroniques et d’Électrotechniques, désigné pour les uns sous l’appellation de 
T.E.C 583 et pour les autres sous l’appellation de T.E.C 421. Ensuite, viendront les 
étudiants du cycle court (les techniciens supérieurs) qui doivent suivre une version 
allégée, conçue sous forme d’un module intitulé T.E.S 504 pour les Facultés 
d’Engineering, ou d’un module nommé S.E.P 215 ou même d’un cours connu sous la 
désignation S.E.C 220 pour les Facultés des Sciences. (S.E.P 215 concerne la 
spécialité Physique et S.E.C 220 la spécialité Chimie). 

En système LMD, ce cours est enseigné en deuxième année pour la filière "Science 
et Technologie" (ST) pour toutes les options qui composent les deux années du tronc 
commun du département d’Électronique, département d’Électrotechnique et du 
département du Transport. D’autres facultés l’ont retenu pour faire partie de leur 
programme d’enseignement. Donc, c’est un élément de base dans les formations de 
Licence toutes options confondues. 

Dans la conception de ce cours, nous avons essayé d’une part, d’être le plus 
possible conforme aux exigences du programme arrêté par la tutelle (Ministère de 
l’Enseignement Supérieur et de la Recherche Scientifique MESRS) et d’autre part 
aussi, de tenir en compte des réalités d’actualisations et de mise au point imposé par 
le développement rapide et soutenu des techniques de mesures. 

Dans ce livre, nous nous sommes préoccupés, en premier lieu, uniquement de 
l’aspect pédagogique des techniques de mesures. Nous avons abordé les éléments 
techniques et scientifiques de bases des appareils de mesures analogiques parce 
qu’ils intègrent beaucoup de notions et de théories traitées en même temps dans 
d’autres cours de Mathématiques (comme l’étude des équations différentielles du 
premier et du second ordre, le développement limité en série de Fourrier, les proba-
statistiques etc…) et de physique-électroniques (comme les lois de Laplace, de Lenz, 
Foucault et certains théorèmes comme celui de de Gauss, de Thomson et d’autres…). 
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De plus, même si, dans nos jours les appareils numériques sont de plus en plus 
utilisés. Il ne faut pas s'imaginer que les appareils analogiques vont disparaître 
complètement. Dans la pratique, le technicien aura à sa disposition durant plusieurs 
années encore les deux types d'appareils. En général, leur coût est moins élevé que 
celui de leurs homologues numériques. Enfin, un certains nombre d'utilisateurs 
préfèrent l'affichage par aiguille que par valeur numérique. 

Naturellement, dès le départ nous avons pensé à élever le niveau de son contenu 
et la qualité de ce cours pour le hisser à un rang magistral valable. Pour arriver à ce 
but, nous avons essayé de fournir un effort particulier pour l’améliorer en y introduisant 
des parties originales propres et des idées inédites développées à partir des sources 
très récentes. Certainement, de telle contribution pourrait constituer un pas de plus 
pour la bonne formation de nos jeunes ingénieurs et techniciens supérieurs de demain. 
Bien entendu, à côté de cela, notre vœu reste aussi celui de bien présenter un 
document scientifique correct et qu’il soit l’un des plus sûrs disponibles sur le marché 
du livre et des publications universitaires. 

Dans cette troisième édition, beaucoup d’améliorations ont été apportées. Certains 
chapitres ont été repensés. Ce recadrage apparaît net au chapitre III, très dense et 
long qui a été refait avec beaucoup de consistance. Les figures ont été retouchées 
avec beaucoup de soins et de finesse. 

Dans son ensemble, ce livre a pu bénéficier des moyens de conception moderne 
offerts par les outils de bureau des ordinateurs de nos jours. La première édition a été 
conçue par le premier Mac (aujourd’hui obsolète) qu’a créé Stève Jobs dans son 
premier "atelier garage". À son époque, la version du Word6.1 (Mac) utilisée, était le 
programme joyeux du traitement de texte dominant avant que le MS Office de Microsoft 
n’ait pu reprendre la main. 

Enfin, je tiens à remercier tous ceux qui, de loin ou de près ont contribué à faire 
avancer le processus d’impression de ce livre. Je remercie aussi tous les cadres 
professionnels de l’OPU pour le sérieux et la qualité professionnelle dont ils ont pu 
garder durant toutes ces années d’exercices. 

En particulier, je dois remercier Monsieur Rabah Kaouache, Directeur de la région 
Est au sein de l’OPU, pour son envergure, sa compétence, sa qualité humaine et son 
aide qu’il m’a apporté, dans le passé (quand on était ensemble à la Wilaya de Jijel), le 
présent (où nous sommes encore ensemble au Ministère de l’Enseignement Supérieur 
et de la Recherche Scientifique MESRS) et à toutes les circonstances. 

À Mme L. Larbi, au siège de l’OPU à Alger, pour ses efforts consentis depuis 
l’apparition de la première édition, aujourd’hui complètement épuisée, jusqu’à cette 
troisième édition dont l’apparition n’est qu’incessante. 

Et à beaucoup d’autres, que même s’ils ne sont pas cités ici, nous leur 
reconnaissons la coopération, le respect et la bonne éducation qu’ils nous ont tout le 
temps apporté. 
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Nous espérons que ce "coup de main" sera apprécié à sa juste valeur par la 
communauté universitaire et scientifique concernée. 

Nous comptons poursuivre la même démarche pour toujours mieux perfectionner. 
Certes, c’est un petit effort qui reste à consolider, à renforcer et à soutenir tout en 
restant toujours en parfaite disposition à l’écoute d’éventuelles critiques, de diverse 
suggestions et de précieux conseils pour encore améliorer, encore mieux faire. 

 

                                                                               À Constantine, Mai 2016 

                                                                                  Messaoud BOUKEZZATA 

                                                                     Professeur d’Enseignement Supérieur 
                                                                                Université de Constantine 1 

 

 

 

 

 

 

  



Chapitre I 

 

I.1. LES ERREURS DE MESURE : 

S’il est vrai que le compte d’un nombre donné, d’objets discrets, ou l’exécution d’une 
opération de calcul arithmétique peut donner un résultat exact ; il est vrai aussi, que la 
mesure d’une grandeur physique ne peut pas être donnée comme un résultat exact. Il 
ne peut être qu’approximatif. Cette affirmation reste valable, même si, ces mesures 
sont préparées et réalisées avec soin et rigueur. En d’autres termes, tout résultat de 
mesure est alors entaché d’erreurs. 

Afin d’exprimer le résultat d’une mesure avec un intervalle de confiance optimal, qui 
permet de préciser le degré d’approximation, il est indispensable de rechercher les 
causes d’erreurs, de les évaluer et d’en estimer une valeur limite, généralement 
pessimiste, majorée d’une borne supérieure que nous allons ultérieurement appelée 
"incertitude absolue". Le degré de cette incertitude va essentiellement dépendre de la 
précision des moyens de mesures utilisés, de la manière dont on fait la mesure et de 
la qualification des observateurs. 

 

I.1.1. Nature des erreurs de mesure : 

Les erreurs peuvent être classées selon leur nature et suivant leur origine. Les plus 
courantes sont celles qu’on peut les regrouper schématiquement dans les grandes 
catégories indiquées comme suit : 

 

I.1.1.1. Erreurs systématiques : 

Elles se produisent généralement de la même façon avec des valeurs soit 
constantes, soit qu’elles suivent une certaine loi bien déterminée. Elles sont inhérentes 
à l’équipement (erreurs de constructions) selon la précision des appareils, à la méthode 
de mesure utilisée (divers modes de montages) et aux conditions durant lesquelles 
vont se dérouler les processus de mesure, que ce soit propre à l’opérateur (erreurs 
d’appréciation ou de lecture dues à l’erreur de parallaxe) ou propre à l’environnement 
extérieur (milieu, champs extérieurs, contacts, connexions, etc…). 

En définitive, ce genre d’erreurs pourrait être découvert en effectuant de nouveaux 
mesurages, faisant appel à une autre méthode, à d’autres appareils et à d’autres 
opérateurs. Leurs influences peuvent donc être réduites, calculées et par conséquent 
éliminées. 
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I.1.1.2. Erreurs accidentelles : 

Elles ont une nature aléatoire et variable en grandeur et en sens. Ce qui indique que 
ces erreurs sont généralement imprévisibles et accidentelles, donc incontrôlables, 
motif pour lequel on ne peut pas les éviter ou complètement les éliminer. Par 
conséquent, on ne peut avoir sur ce type d’erreurs, que des informations 
approximatives et incomplètes. Pour les réduire, on doit faire appel à des méthodes 
statistiques, en utilisant la loi de la "distribution normale" des erreurs accidentelles, ou 
loi de Gauss. Le résultat sera d’autant plus proche de sa valeur exacte que le nombre 
N de mesures augmente et tend vers le plus grand nombre possible de mesures. 

 

I.1.1.3. Erreurs grossières : 

Elles peuvent être dues à la défection des appareils de mesures utilisés, à la 
méthode de mesure ou de calcul incorrectement choisi, ou aux fautes de lectures des 
indications des appareils. Ce sont dues à certains types de résultats irréguliers qu’on 
peut facilement reconnaitre par observation. Par exemple, comme pour le cas de 
certaines valeurs qui dépassent largement les autres valeurs d’une même série de 
mesure. 

 

I.1.2. Définitions : 

I.1.2.1. L’erreur absolue  x   : 

L’erreur absolue  x  est l’écart qui existe entre la valeur mesurée mx  et sa valeur 

exacte vx , la vraie valeur de la grandeur physique considérée. 

                          vm xxx          [même unité que mx ]                                                           (I.1) 

Il faut remarquer que cette définition reste totalement une notion abstraite, du fait 

que la valeur exacte vx , d’une grandeur physique est inaccessible à la mesure, sinon 

il n’y aurait plus d’erreur. Par conséquent, l’erreur absolue reste également totalement 
inaccessible, mais malgré cette situation triviale, cela n’empêche pas de la définir. 

 

I.1.2.2. La correction (𝑪 ) : 

C’est la compensation de la dérive, d’un résultat de mesure par rapport à sa valeur 

exacte vx . Cette correction doit avoir une valeur égale et de signe opposé à celle de 

l’erreur  x . La correction ne peut être faite que si l’erreur  x  est connue, ce qui 

permet d’écrire : 

                                     mvvm xxxxxc  )(                                                            (I.2) 
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I.1.2.3. L’erreur relative  r  : 

C’est le rapport entre l’erreur absolue  x  et la vraie valeur vx  de la grandeur 

mesurée  

                                          
v

r
x

x
                   [sans dimension]                                         (I.3) 

C’est un nombre, sans dimension, qu’on exprime généralement en pourcent (%) : 

                                            100% 
v

r
x

x
                                                                              (I.4) 

 

I-1.3. De l’erreur à l’incertitude : 

En réalité, la notion d’erreur, ne représente qu’une signification beaucoup plus 
mathématique qu’on a utilisé principalement, dans le but d’établir un procédé de calcul 
d’erreur. Dans la pratique, nous allons par contre, avoir besoin d’utiliser la notion 
d’incertitude qui caractérise un aspect beaucoup plus pratique de la réalité de la 
mesure. 

 

I.1.3.1. Définition de l’incertitude : 

L’incertitude est une estimation du maximum de l’erreur fortuite (systématique et/ou 
accidentelle) totale qui a pu être commise sur une mesure. 

 

I.1.3.2. Incertitude absolue  x  : 

C’est l’écart  x , probable entre la valeur mesurée mx  et la vraie valeur vx . 

                                                         vm xxx                                                                   (I.5) 

Cet écart peut toujours être estimé ou calculé, et par conséquent, vx  peut à son 

tour, être exprimé en fonction du degré de précision de l’estimation de cette incertitude. 

 

I.13.3. Incertitude relative    : 

C’est le rapport entre l’incertitude absolue  x  et la valeur mesurée (approchée) mx  

de la mesure. 
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mx

x0
 , ou bien   100% 




mx

x
                                     (I.6) 

Aussi, ce rapport est également exprimé en pourcent (%) de la même manière que 
celui de la relation (I.4) déjà vue précédemment ci-dessus. 

 

I.2. ÉVALUATION DE L’INCERTITUDE DE SYSTÉMATIQUE : 

 

I.2.1. Incertitude de méthode : 

 

I.2.1.1. Calcul de l'incertitude absolue : 

Dans le cas où le résultat d'une mesure est donné par une expression formée d'une 
somme ou d'une différence de mesures, l'incertitude absolue  x  est la somme des 

incertitudes absolues de chacun des termes constituant la somme ou la différence. 

Donc, si : 

                                      i

n

i

i
xx 

1

1                ⇒                



n

i

ixx
1

                     (I.7) 

( ix  peut avoir des valeurs positives ou négatives). 

 

I.2.1.2. Calcul de l'incertitude relative : 

Pour traiter le cas du calcul de l'incertitude relative d'expressions composées, nous 
allons supposer que la grandeur y considérée, est fonction des grandeurs mesurées 

nxxx  , .  . . , , 21  , selon la relation : 

                                                   nxxxfy  , .  . . , , 21                                                              (I.8) 

Les incertitudes de mesures sur nxxx  , .  . . , , 21  et respectivement notées 

nxxx   , .  . . , , 21 , vont affecter le résultat y d'une incertitude absolue y , de telle sorte 

qu'on peut écrire : 

                                                  nn xxxxxxfyy   , .  . . , 2211 ,                 (I.9) 

Pour trouver y , nous allons effectuer le développement d’ordre n, de cette dernière 

expression (I.9) en série de Taylor, ce qui permet d'écrire : 
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   

     

 

n

n

nn

nn

n

n

n

n

nnn

x
x

f
x

x

f
y

xx
xx

f

xx
xx

f
x

x

f
x

x

f
x

x

f
x

x

f
y

xxxfxxxxxxfy




































































  .  . . 

(I.10)                                                                 .  . .   .  . . .  . . 

   .  . .  .  . .  .  . . 

 , .  . . ,  , .  . . , 

1

1

2

1

1

2

2

21

21

2
2

2

2
2

12

1

2

1

1

212211

!2

1

!2

1

,,

 

On s'est limité à un développement du premier ordre, car les incertitudes provenant 

des termes à partir du second ordre deviennent de plus en plus négligeables, et  ∆𝑦𝑚𝑎𝑥 
peut alors être écrite sous la forme : 

                                             ''

2

'

1max
 .  . . 

21 nxnxx fxfxfxy                             (I.11) 

d’où:                                   
f

f
x

f

f
x

f

f
x

y

y nx

n

xx

''

2

'

1

max

 .  . . 
21








                   (I.12) 

Pour mettre en évidence les incertitudes relatives, l'expression (I.12) peut, 
finalement être écrite sous la forme : 

                                
n

x

n

nxx
x

f

f

x

x
x

f

f

x

x
x

f

f

x

x

y

y n

 .. .  . .  .. ..

'

2

'

2

2
1

'

1

1

max

21 














               (I.13) 

d'où:                    
n

x

x

x

x

x

xy x
f

f
x

f

f
x

f

f
n

n
 .. .  . .  .. ..

'

2

'

1

'

2

2

1

1
                                 (I.14) 

De ce qui vient de précéder, on peut donc déduire la règle suivante dite : "la règle 
de la différentielle logarithmique" qui permet d'obtenir l'incertitude relative  r  de la 

fonction  nxxxfy  , .  . . , , 21 , en effectuant la démarche suivante : 

- i) Prendre le logarithme de la fonction  nxxxfy  , .  . . , , 21 . 

- ii) Calculer la différentielle 𝑑𝑦=𝑑𝑓. 

- iii) Faire apparaître dans cette expression les différentielles logarithmiques de 

chacune des variables nxxx  , .  . . , , 21 . 

- iv) Prendre le module de tous les termes, après mise en évidence des 
différentielles logarithmiques. 

- v) Remplacer chacune des différentielles logarithmiques par les expressions 

d’erreurs 
nxxxy   , .  . . , ,,

21
, respectivement. 
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I.2.1.3. Exemples : 

1°) Si nous voulons déterminer l’incertitude relative  y  d’une grandeur physique 

y  qui obéit à une certaine loi, que nous prenons, à titre d’exemple, comme celle 

donnée ci-dessous : 

                                                   
D

CBA
y

mn.
                                                                     (I.15) 

où A, B, C et D sont des variables. Pour calculer  y  nous procédons de la manière 

telle que indiquée ci-dessous de l’étape a) jusqu’à l’étape e) : 

a)      DC
m

BnA
D

CBA
y

mn

loglog
1

log.log
.

loglog  . 

b)       













 DC

m
BnA

D

CBA
dyd

mn

loglog
1

log.log
.

loglog . 

c)      
D

dD

C

dC

mB

dB
n

A

dA

y

dy


1
.                                                                                                 (I.16) 

d)      
D

dD

C

dC

mB

dB
n

A

dA

y

dy


1
. 

e)      DCBAy
m

n  
1

. 

Nous voyons que l’incertitude relative totale est la somme des incertitudes relatives 
de chaque grandeur A, B, C et D obtenues par mesure directe, précédée d’une 

multiplication représentative du poids que traduit la relation de définition. 

2°) Si par contre, nous voulons déterminer l’incertitude relative  x  d’une grandeur 

physique x  qui est donnée par : 

BAx  , 

alors  x  sera dans ce cas donnée par : 

                                                      
BA

BA
BAx x




                                     (I.17) 

On constate que la différence n’est pas préférable comme méthode de mesure de 
l’incertitude, car cette dernière peut avoir une valeur considérable, comme on peut 

facilement le comprendre en faisant tendre A vers B, (A → B) qui donne ( x  → ∞). 
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De telles situations deviennent souvent inconfortables, donc, il y a lieu d’éviter les 
déterminations de ce genre. 

 

I.2.1.4. Applications pratiques : 

Si on veut déterminer l’incertitude relative maximale dans les cas où la mesure des 
résistances a été faite en séances des travaux pratiques TP. Deux montages possibles 
peuvent alors être adoptés : Montage amont, appelé aussi (longue dérivation) ou 
montage aval (courte dérivation), tel que celui donné par le schéma de la Figure I.1 
donnée ci-dessous. 

 
Figure I.1 : Méthode de mesure Volt-Ampéremétrique. 

 
 

Dans le cas où le montage choisi est le montage amont (Figure I.1 ; K au point 𝐴𝑚), 
la relation de calcul de la résistance inconnue est : 

                           axax R
I

U
RIRRU                                                             (I.18) 

où U et I sont les valeurs mesurées de la tension et du courant et Ra la résistance de 
l’ampèremètre qu’on suppose connue avec précision. 

Si, on applique le résultat du calcul mathématique direct (voir expression I.13 
donnée ci-dessus), alors on aura : 

 .  . ...

1

......
2

''

max

a

a

IU

x

x

RI

U

T

U

I
I

I

R
I

U
IU

U

U
I

f

f

I

I
U

f

f

U

U

R

R



























   

                                           

























 











 

a
x

x

R
I

U
I

U

I

I

U

U

R

R

max

                                           (I.19) 

Mais, comme : RRR
I

U
xmesurée  , 
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Donc : 

                    
















 























 











 

x

a

aax

ax

x

x

R

R

I

I

U

U

RRR

RR

I

I

U

U

R

R
1

max

                      (I.20) 

 

Cette dernière relation est très bien connue dans le calcul des incertitudes relatives 
de la méthode Volt-Ampéremétrique. On voit bien que, si on veut que l’incertitude 

relative 

max








 

x

x

R

R  soit aussi petite que possible, et que les incertitudes relatives 
U

U  

sur la tension et 
I

I  sur le courant sont celles dues aux deux appareils, donc imposées, 

il faut que le facteur 









x

a

R

R
1 , soit à son tour, le plus petit que possible. Donc, 

xR  doit 

être autant petite que possible. 

D’où la conclusion suivante qui dit que le montage amont est le montage le plus 
adapté pour mesurer les faibles résistances. Ici, le mot "faible résistance" veut dire des 
valeurs comprises entre une dizaine de kΩ jusqu’à l’ordre de 1 Ω. 

D’une manière analogue, on peut aisément calculer l’incertitude relative du montage 
aval (Figure I.1 ; K au point 𝐴𝑣), que le lecteur prendra soin de vérifier qu’elle s’écrira 
sous la forme : 

      
















 























 











 

x

v

vvx

vx

x

x

G

G

I

I

U

U

GGG

GG

I

I

U

U

G

G
1

max

                                        (I.21) 

avec : 
x

x
R

G
1

   et  
v

v
R

G
1

 . 

D’où l’autre conclusion qui nous indique que le montage aval est le montage le plus 
adapté pour mesurer les fortes résistances. Ici aussi, le mot "forte résistance" veut dire 
des valeurs supérieures à 10 kΩ et jusqu’aux MΩ. 

Enfin, pour mesurer les très faibles résistances, valeurs < 1 Ω, le montage adéquat 

est représenté par un schéma d'une mesure "en quatre points". Les résistances Rc 

sont les résistances de contact, non négligeables ici, car un fort courant circule dans la 

branche de la source. Lorsqu'une résistance est faible, il faut y faire circuler un fort 

courant pour obtenir une tension mesurable à ses bornes. Dans ce cas, les résistances 

de contact (Figure I.2), qui, ici, sont du même ordre de grandeur que Rx, produisent 

une tension mesurable. Pour ne pas mesurer Rx + 2Rc, la tension est mesurées à 

travers deux bornes qui ne voient pas passer I, mais seulement i (Figure I.2). 
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Figure I.2 : Méthode de mesure dite en "quatre points". 

 

La mesure des très faibles résistances est un cas très délicat. Actuellement, on 
utilise une technique très poussée appelée "Offset Compensated Ohms (OCO)". Les 
fils en trait gras mesure la chute de tension aux bornes de la résistance et ceux en 
traits fins mesure le courant qui traverse cette résistance. Le montage fait appel à un 
multimètre digital de type Ni 4070 FlexDMM "higher-resolution Digital Multimeters 
Measurments (DMMs)". Deux étapes sont ainsi nécessaires pour déterminer la valeur 
de Rx. La première, consiste à mesurer la chute de tension V en présence d’une source 
de courant et la seconde consiste à déterminer aussi la chute de tension V’ mais sans 
la présence de la source de courant. L’appareil est construit de telle sorte qu’il puisse 
déterminer VOCO. Avec cette dernière valeur, le Ni 4070 FlexDMM peut alors donner le 
résultat de la valeur très précise, donc correcte de la résistance à mesurer Rx. (voir 
Figure I.3 donnée ci-dessous). 

(source : http://www.ni.com/ ; ainsi que : http://www.ni.com/swf/presentation/us/4070resistance/). 

 

 
Figure I.3 : Montage à "Multimètre Digital". 

 

Ce qu'il faut retenir en conclusion, c'est que dans le calcul d'erreurs, il faut 
considérer toujours le cas le plus défavorable, où toutes ces erreurs n'ont que des 
signes positifs. D'autre part, vu les valeurs très petites des erreurs, on exclue 
d'habitude du calcul, les puissances d'ordre supérieure, en appliquant les formules 
d'approximations de type : 

                                          
   

  3121

3

21 1
1

1.1





pmn

p

mn





                               (I.22) 

 

http://www.ni.com/
http://www.ni.com/swf/presentation/us/4070resistance/
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I.2.2. Incertitude de lecture : 

* On peut l'estimer, selon la convention choisie, et dans le cas le plus défavorable 
à la moitié de la plus petite division d'une échelle donnée pour un appareil à aiguille. 

** Pour un appareil numérique à affichage digital, l'incertitude peut être estimée 
à une unité du dernier chiffre clignotant. 

 

I.2.3. Incertitude de classe : 

Pour un appareil à aiguille, la classe C représente un nombre qui donne en 
pourcent (%) de la déviation maximale, l'incertitude absolue correspondant à une 
lecture quelconque. 

En fait, la classe C d’un appareil de mesure n’est autre que l'incertitude absolue 
maximale de la mesure, exprimée en pourcentage du calibre Ca utilisé. 

Par exemple, pour un voltmètre de classe 2 sur le calibre 30 V, l'incertitude absolue 
de la mesure est : 

∆V = C x Ca = 30 x 0.02 = 0.6V. 

Donc : 

                              a
a Ccalibreduunité

CC
diven

DC
x    

100
 

100





                                     (I.23) 

d'où : 

                                     
m

a

x

CC 
%                                                                                            (I.24) 

où C représente la classe, D le nombre de divisions d'une échelle donnée et Ca le 
calibre utilisé. 

Le plus souvent, les appareils utilisés sont de classe 1. L'erreur relative de mesure 
est minimale lorsque la déviation de l'aiguille est maximale. Cette incertitude absolue 

est constante pour toutes les mesures sur un calibre. L'incertitude relative xx /  varie 

donc inversement à x . Nous avons intérêt à choisir le calibre Ca de telle sorte que 
l'aiguille dévie le plus possible. La classe C tient compte des incertitudes liées aux 
composants de l'appareil. 

Sur une échelle D donnée, le nombre ( x ) de divisions que représente 

l'incertitude de classe caractérise "la zone interdite" dans laquelle les mesures 
n'ont aucune importance, car l'incertitude absolue sur une mesure donnée devient 
plus importante que la mesure elle-même. 
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On voit bien, dans la relation (I.24), que si, 
mx  tend vers le cas des mesures où la 

déviation de l’aiguille est maximale, c’est-à-dire quand mx = Ca utilisé, l'erreur 

relative exprimée en (%) devient exactement égale à la valeur de la classe C. 

 

I.2.4. Incertitude inscrite en claire : 

Elle est donnée directement en pourcent (%) de la valeur indiquée (en clair ou 
codée) sur le corps des éléments qu'on veut mesurer. À titre d'exemple, on peut 
rencontrer les indications suivantes sur le corps d'une résistance R, d'une capacité 
C ou une self L. 

Exemples : 

                          R = 1 KΩ   à   0.4 %             ΔR = 4 Ω 

                       C = 0.5 µF à 3 %                    ΔC = 15 nF 

                      L = 0.2 µH à 0.1%                 ΔL = 0.2 nH 

 

I.2.5. Incertitude codée : 

Dans le cas où un code de couleurs est utilisé, la tolérance qui représente 
l'incertitude relative sur la valeur indiquée est définie par une bague de couleur 
(anneau) et est décodée selon la procédure qui suit : 

D'une manière générale, les bagues de couleurs peuvent signifier : un chiffre, une 
puissance de dix, une tolérance, une tension ou une lettre caractéristique 
particulière. 

- Les chiffres : sont représentés par les deux ou parfois par les trois premiers 
anneaux de couleurs selon le cas utilisé. 

En règle générale, pour diminuer 
les erreurs de mesures et faire 
augmenter la précision autant que 
possible, on doit utiliser le plus 
possible la partie droite de l'échelle 
d'un appareil de mesure (c.à.d la 
deuxième moitié de l'échelle). Sinon, 
l'incertitude relative sera de plus en 
plus grande que l’aiguille sera de 
plus en plus proche du début de 
l’échelle. 

 
Figure I.4 : xx /  est minimale 

lorsque la déviation de l'aiguille est 
maximale (ici, C = 1). 
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- Les puissances de 10 : après les anneaux de couleurs des chiffres, un autre 
anneau de couleur est réservée pour représenter les puissances de dix, où 
l'exposant positif de la puissance de dix. II indique le nombre de zéros à ajouter aux 
chiffres, l'exposant négatif par contre, indique comment déplacer la virgule vers la 
droite. 

- La tolérance : indique en pourcent de la valeur représentée, la valeur de 
l'incertitude relative avec laquelle elle peut fluctuer. Le noir ou l'absence de couleur 
correspond à ± 20 %. La plupart du temps, on trouve un anneau de couleur argenté 
pour ± 10 % et doré pour ± 5 %. 

- La classe du produit : caractérise la qualité de la matière avec laquelle le produit 
est fabriqué. La couleur attribuée dans ce cas dépend essentiellement de la norme 
utilisée par le fabriquant (Normes allemandes DIN, Normes françaises NF, etc...) 

- La tension : il s'agit de façon habituelle d'indiquer la valeur maximale 
admissible en période de longue durée. 

 

I.2.5.1. Les lettres caractéristiques : 

Ces lettres déterminent une propriété particulière telle que l’aptitude à la charge ou 
le coefficient de température. Dans le cas d’une résistance par exemple, la tolérance 

R  peut être exprimée en fonction du coefficient de température α et de la variation de 

température comprise dans l’intervalle  ΔTTT 00  ,  de cette résistance comme suit : 

                                    RT
R

RR
TTRR  


 .             1

0

0
00

                      (1.25) 

Dans le tableau qui suit, nous allons résumer les indications principales communes, 
pour les résistances et les condensateurs dont l’utilisation est devenue normalisée. 

Comme nous le voyons à travers le tableau donné ci-dessous (Tableau I-1.), le 
nombre des anneaux de couleurs peut varier de quatre à six selon les informations 
qu’on veut transmettre. 

Dans le cas des résistances dont on veut déterminer la valeur à travers le décodage 
des anneaux de couleurs, il faut préciser que pour bien faire cette opération de lecture 
des bagues de couleurs on doit tout d'abord placer la résistance dans le bon sens. En 
général, la résistance possède un anneau doré ou argenté, qu'il faut placer à droite. 
Dans d'autres cas, c'est l'anneau le plus large qu'il faut placer à droite.  

Dans la plupart des applications, seul un nombre restreint de couleurs ou de valeurs 
est utilisé. Pour clarifier cette situation, nous allons noter les recommandations 
suivantes : 

i).La suite des couleurs doit se lire en fonction de la position de la couleur de 
tolérance. Car, à cause de la symétrie des corps de certains composants, la première 
couleur sera reconnue après avoir repérer et identifier la couleur de la tolérance qui est 
généralement de couleur "or" ou "argent". 
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ii) Pour les résistances à usage général, les bagues de couleurs fréquemment 
rencontrées sont celles des colonnes A, B, D, E, la colonne C est supprimée pour le 
ca des résistances à 4 anneaux. La colonne E est rarement utilisée. 

iii) Pour les résistances de précisions (à 5 ou 6 anneaux), on introduit, de plus, un 
troisième chiffre (colonne C) et le coefficient de température (variation de la résistivité 
électrique en fonction de la température, colonne H). 

iv) Pour les condensateurs usuels, on utilise parfois le même codage que celui utilisé 
pour les résistances usuelles. Dans d’autres cas on ajoutera les indications de la 
colonne G et H. Les valeurs sont indiquées en pF et pour les capacités < 10 pF, dans 
la colonne E, à la place de 1% on met 0.1 pF. 

v) Les couleurs "or" et "argent" sont directrices, d’où la possibilité de les remplacer 
comme suit : au lieu de la couleur dorée "or" pour 10-1 on met le blanc et pour la 
tolérance %5  on met le vert. Et au lieu de l’argent pour 10-2, on met le gris et pour la 

tolérance %10  on met le blanc. 

 

Figure I.5 : Code de couleurs pour les résistances à 5 ou 6 anneaux. Positionner la 
résistance de façon à avoir toujours l'anneau de couleur de la tolérance (résistance à 5 

anneaux) ou l'anneau du coefficient de température (résistance à 6 anneaux) sur sa droite. 
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Tableau I.1 : Signification des anneaux de couleurs, dans le cas des résistances, où le 
code attribué correspondant, selon le nombre des anneaux, qui peut varier de quatre à six et 
aussi selon l’ordre de sa position pour la détermination correcte de la valeur de la résistance. 

 

À noter : Retenez bien cette phrase pour que vous puissiez trouver facilement l’ordre 
des couleurs : (Ne Manger Rien Ou Je Vous Brûle Votre Grande Barbe). 

 

CODE DES COULEURS DES CONDENSATEURS AU 
MICA 

1er 
chiffre 

2ème 
chiffre 

Multiplicateur Tolérance Isolation Couleurs 

0 0 1 pF 20 % - Noir 

1 1 10 pF 1 % 100 V Brun 

2 2 100 pF 2 % 250 V Rouge 

3 3 1 nF - - Orange 

4 4 10 nF - 400 V Jaune 

5 5 100 nF - - Vert 

6 6 1 µF - 630 V Bleu 

7 7 - - - Violet 

8 8 0.01 pF - - Gris 

9 9 0.1 pF - - Blanc 

- - 0.01 pF 10 % - Argent 

- - 0.1 pF 5 % - Or 

Tableau I.2 : Signification du code de couleurs pour le cas des condensateurs. 

 

 
Repère 
Couleur 

 
A :  

1er 

chiffre 

 
B :  

2e 

chiffre 

 
C :  

3e 

chiffre 

 
D : 

Multipli-
cateur 

 
E 

Tolérance 

 
F 

classe 

 
G 

Tension 
nominale V 

H 
lettre typique ou 

coefficient de 
température 

Noir 0 0 0 10 20%   A ± 2 10-4/oK 

Marron 1 1 1 101 1%  100 B ± 1 10-4/oK 

Rouge 2 2 2 102 2% 0,5 DIN 200 C ± 5 10-5/°K 

Orange 3 3 3 103 3%  300 D ± 15 10-6/oK 

Jaune 4 4 4 104 4% 2 DIN 400 E ± 25 10-6/oK 

Vert 5 5 5 105 0,5%  500 F - 

Bleu 6 6 6 106 0,25%  600 G  

Violet 7 7 7 107 0,1%  700   

Gris 8 8 8 10-2 30%  800 I  

Blanc 9 9 9 10-1 10%  900 J  

Argent    10-2 10%  2000   

Or    10-1 5%  1000   
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Exemples : 

Les figures suivantes (Figures I.6 à I.12) représentent quelques cas réels, souvent 
rencontrés quand on fait les réalisations pratiques. 

 

 

                                                            

Figure I.8 : C = 47x1000 pF ± 10%, 400V                      Figure I.9 : C = 56x100 pF± 10%, 250V 
(Tolérance : Blanc ± 10%, Noir ± 20% ; Tension : Rouge 250V, Jaune 400V). 

 

 
Figure I.10 : Codage par 5 anneaux de couleurs des résistances de précisions. 

Ici, R = 235x106 Ω ± 5% = 235 M Ω ± 5%. 

 
Figure I.6 : Code de couleur pour 

Condensateurs 

 
Figure I.7 : Exemple de codage de 

condensateur 
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Lettre 
Majuscule 

C ≤ 10 
pF 

C > 10 
pF 

Lettre 
minuscule 

Tension 
nominale 

A  - a 50V  DC 

B ± 0,10 - b 125V  DC 

C ± 0,25 - c 160V  DC 

D ± 0,50 0,5% d 250V  DC 

E - - e 350V  DC 

F ± 1 ± 1% f 500V  DC 

G ± 2 ±  2% g 700V  DC 

H - ± 2,5% h 1000V  DC 

J - ± 5% - - 

K - ± 10% u 250V  AC 

L -  v 350V  AC 

M - ± 20% w 500V  AC 

 
Tableau I.3 : Signification des anneaux de couleurs, dans le cas des condensateurs. Pour 

certains condensateurs usuels, on utilise parfois le même codage que celui utilisé pour les 
résistances. Dans d’autres cas on ajoutera les indications de la colonne G et H. Les valeurs 
sont indiquées en pF et pour les capacités < 10 pF. Dans la colonne E, à la place de 1% on 

met 0.1 pF. 
 

 

 
Figure I.11 : Codage par code de couleurs des Thermistances (CTN ou CTP) et 

Varistance (VDR).Si le marquage n'est pas "en clair", Le repérage de la valeur nominale 
s'effectue comme pour une résistance ordinaire. 
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I.3. DÉTERMINATION DE L’INCERTITUDE ACCIDENTELLE : 

Nous avons vu précédemment, que malgré le fait que les erreurs systématiques 
peuvent se produire à notre insu, il est toujours possible que ce type d’erreurs pourrait 
être connu et estimé. Donc, pour la suite, nous supposerons qu’on peut selon le cas, 
soit les négliger, soit les tenir en compte pour corriger les résultats. 

Cependant, comme les erreurs accidentelles ont une nature aléatoire et 
imprévisible, nous allons voir, pour ce type d’erreurs, que seules les méthodes 
statistiques permettent de déterminer une incertitude globale dans le cas d’une 
population donnée et finie de résultats. 

 

I.3.1. Exemple statistique : 

Supposons qu’un nombre de mesures a pu être effectué par de nombreux 
opérateurs en utilisant de nombreux appareils, de sorte qu’on peut statistiquement 
affirmer que, la valeur exacte est probablement comprise à l’intérieur de l’éventail de 
mesures relevées. Nous pouvons même espérer qu’elle se situe plutôt vers le milieu 
de cet éventail. 

Pour simplifier l’analyse de cette partie, nous allons au début, prendre un cas 
expérimental con concret où les résultats de mesures sont résumés dans le tableau I.4 
ci-dessous. 

Un groupe d’étudiants constitué d’un nombre total de 2000 éléments sur lequel nous 
allons effectuer "la mesure de taille" de chaque personne. Les résultats sont les 
suivants : 

 

li 173.64 174.00 174.34 174.64 175.00 175.34 175.64 176.00 176.34 

ni 3 37 138 312 560 210 99 35 6 

Tableau I.4 : Les résultats obtenus, résumés après le déroulement de l’opération de 
mesure. 

 

Sur une population de mesure N , un résultat donné ix , peut apparaître plusieurs 

fois avec la même valeur qu’on va appeler fréquence d’apparition in , alors que 

l’ensemble des valeurs ix , sont complètement décrites par une variable X , appelée 

variable aléatoire. 

Les résultats d’expérience du tableau I.4 précédent peuvent être représentée par la 
fonction  ii xfn   et schématisée par la courbe de la (Figure I.10) suivante. Nous 

allons voir que, du point de vue analytique, ce type de courbe est caractéristique 
connue sous le nom de "courbe de Gauss", que nous allons développer dans les 
paragraphes qui suivent. 
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I.3.2. Cas Gaussien : 

Si nous revenons au cas de l'exemple précédent, où nous supposons que le nombre 
de mesures est infiniment grand, alors la variable x  devient continue et la courbe de 
la (Figure 1.12) sera aussi continue. Pour plus de précision, nous allons considérer que 
la présence du résultat X; dans un intervalle de confiance est associée à une probabilité 
de présence. Le calcul de cette probabilité nous emmène à partager l'ensemble de ces 
résultats en deux lots se situant de part et d'autre de la vraie valeur vx . L'expression 

rigoureuse de la probabilité des répartitions des N mesures de façon à trouver n 
résultats à droite et N -n  à gauche est donnée par : 

 

                              
  NN

n

N

nNn

NC
nP

2!.!

!

2 
                                                                          (I.24) 

 

où n

NC est le nombre des combinaisons de N  résultats (tous équiprobables) et tirés n  

à n.  2N est le nombre total des arrangements possibles. 

 

En utilisant la formule de Sterling de type : 

                                 nnnn  log!log                                                                                      (I.25) 

 

Nous pouvons déduire de la formule (I.24), l'expression suivante : 

 

                                     nNn
dn

Pd
 loglog

log
                                                            (I.26) 

 

Nous remarquons que le lot le plus 
important se situe autour de 175ix . 

Celte valeur particulière n'est autre 
que la valeur moyenne. De part et 
d'autre de celle-ci, on peut toujours 
caractériser la dispersion relative de 
tout l'ensemble des mesures. 

 
Figure I.12 : Cas d'une population 

de mesure où le nombre N est petit. 
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On voit que la probabilité P ou logP est maximale quand l'expression (I.26) s'annule. 
Ce qui permet de montrer que la population la plus probable est celle correspondant à 
la valeur moyenne n = N/2. Au voisinage de cette valeur moyenne, la fonction P(n) 
peut être développé en série de Taylor selon l'expression (I.27) suivante : 
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Ce développement au quatrième ordre près donne : 
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d’où : 
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La constante  nP  est calculée en normalisant correctement l'expression (I.29) : 
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qui permet d’écrire : 
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Sa forme représente une distribution théorique connue appelée loi normale (ou 
courbe de Gauss), qui prend la forme d’une cloche (Figure I.10) avec des ailes qui 
décroissent très rapidement. 

On caractérise l'étalement relatif d'une distribution de Gauss par la valeur 

quadratique moyenne de l'écart, nnn  , mesurée sur un très grand nombre 

d’essais : 

            
















4

2
exp

22

0

22
22 N

dnnn
N

nPnndnnPnnnnn         (I.32) 

On appelle déviation standard ou écart-type σ, cette valeur quadratique moyenne. 
L’expression (I.31) peut alors être exprimée en fonction de ce dernier paramètre selon 
la relation suivante : 
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     Qu’on note souvent par : 
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L’exploitation de ce type de loi, qui définit une densité de probabilité permet 

d’exprimer l’incertitude accidentelle par les deux paramètres statistique (𝑥 ̅𝑒𝑡 𝜎) qu’on 
va développer et discuter dans les paragraphes suivants. 

Dans le cas ou’ cette densité de probabilité est exprimée par la relation (I.34) on dit 

que l’on est en présence de la loi normale, de moyenne 𝑥̅ et d’écart-type 𝜎  qu’on note 
N(𝑥̅ , 𝜎). Pour normé cette loi, on effectue le changement de variable suivant : 
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xx
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
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Cette loi normale devient centrée et réduite, car elle est de moyenne nulle et d’écart-
type égale à l’unité N(0,1). Son équation sera alors donnée par l’expression suivante : 
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I.3.3. Valeur moyenne (𝒙) : 

La valeur moyenne d’un échantillon de taille 𝑛  est définie par : 
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Elle représente la meilleure estimation de la varie valeur 𝑥𝑣 es elle sera par la suite 
la valeur à adopter quelle que soit la méthode choisie pour déterminer l’incertitude. 

 
Figure I.13 : Distribution de Gauss centrée et 

réduite. 
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Si une infinité de mesurages pouvaient être effectuées sans erreurs systématiques 
sur une grandeur physique déterminée, la courbe de Gauss, de même forme que la 
courbe réduite peut alors être dessinée. Cette courbe aurait pour axe de symétrie la 

parallèle à 𝑂𝑦 et l’équation 𝑥 = 𝑥𝑣. Et à cause de la symétrie, la valeur moyenne de 
l’ensemble des mesures serait alors 𝑥̅ = 𝑥𝑣. L’ordonnée 𝑦𝑖 d’un point donnée 
représente le taux de présence de l’abscisse 𝑥𝑖 correspondant. 

Si on mesure dans les conditions identiques, la même grandeur 𝑥 et on obtient une 
série de résultats 𝑥1, 𝑥2 … , 𝑥𝑛, la valeur moyenne 𝑥 ̅ peut être écrit sous la forme : 
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où 𝛿𝑥𝑖 sont les erreurs absolues affectant les valeurs mesurées 𝑥 𝑖. 

 

                      𝛿𝑥𝑖 = 𝑥𝑖 − 𝑥.     Donc        𝑥𝑖 = 𝑥 + 𝛿𝑥𝑖                                                         (I.39) 

 

Comme la valeur moyenne 𝑥̅ est la première forme d’estimation de la valeur 𝑥𝑣 de 
la grandeur mesurée 𝑥. La valeur la plus probable 𝑥𝑝  se définit comme la limite : 
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Donc, pour : 

                       (𝑛 → ∞),                    
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et 

                                                                  (𝑥𝑝 → 𝑥)                                                        (I.41) 

 

C’est à dire, à la limite, la valeur la plus probable 𝑥𝑝 donne la vraie valeur de la 

grandeur X. 

Dans le cas réel, 𝑛 est fini (et même parfois assez petit), donc 𝑥𝑝 ≠ 𝑥. Alors, il faut 

estimer la différence entre 𝑥 𝑝   et 𝑥̅ , pour pouvoir connaitre l’exactitude de 

l’approximation de 𝑥̅ à 𝑥, chose que nous allons examiner ultérieurement en détail. 
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I-3.4. L’écart type (𝝈) : 

 

 

 

 

 

 

 

 

 

La valeur absolue de la différence entre l’une de ces valeurs et 𝑥̅ est appelée écart-
type et est notée σ : 

                       𝜎 = |𝑥1 − 𝑥̅| = |𝑥2 − 𝑥̅|                                                                             (I.42) 

 

Ainsi, pour chaque valeur 𝑥𝑖, nous pouvons écrire la relation de l’écart-type 𝜎𝑖 
suivant : 

                                                      

𝜎1 = 𝑥1 − 𝑥̅
𝜎2 = 𝑥2 − 𝑥̅

…………
𝜎𝑛 = 𝑥𝑛 − 𝑥̅

}   ⇒  ∑  𝜎𝑖 = 0𝑛
1                                   (I.43) 

Nous voyons que le moyenne arithmétique (ou directe) des 𝜎𝑖 ne peut donner 
aucune indications sur l’écart 𝑥𝑝 − 𝑥̅, car elle est toujours nulle. Pour éviter ce cas 

trivial, nous allons calcules la moyenne pondérée des valeurs quadratiques des 

incertitudes absolues 𝜎𝑖 des mesures. 

Dans le cas ou 𝑌 est donnèe par la relation (I.34) l’écart type quadratique 𝜎′2 sera 
alors définie comme étant la moyenne pondérée des valeurs quadratiques des 

incertitudes absolues 𝜀𝑖 = 𝑥𝑖−𝑥𝑣 des mesures. 
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𝜎′ dépend de 𝑥𝑣   donc inconnu, pour pouvoir l’évaluer on doit l’estimer à travers 𝜎 en 
utilisant la distribution de Student qu’on va développer dans le paragraphe qui suit. 

 

Parmi toutes les valeurs 𝑥𝑖, il 
existe deux particulièrement 

important 𝑥1 et 𝑥2 dont leurs 
ordonnées (voir Figure I.14, ci-
contre) sont respectivement 

𝐼1 𝑒𝑡 𝐼2. 

La valeur absolue de la 
différence entre l’une de ces 
valeurs et 𝑥̅ est appelée écart-
type et est notée σ : 

 
Figure I.14 : Notion d’écart-type σ. 
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I.3.5. Distribution de Student : 

Si on considère un ensemble de mesures ou chaque résultat est attaché à une 

valeur 𝑥𝑖, réalisation d’une variable aléatoire 𝑥 et qui obéit à une loi normale 𝑁(𝑚, 𝜎). 
On veut estimer la valeur moyenne 𝑚 representative de 𝑥𝑣, en prélevant au hasard un 
échantillon de taille 𝑛. 

 

a) Principe de l’estimation : 

En utilisant le principe de l’estimation, nous pouvons, à partir de donnée 
d’échantillons représentatifs (moyenne, écart-type) induire des résultats pour une 
population de mesures beaucoup plus importante. Pour cela, nous allons d’une part, 
caractériser la population–mère par les paramètres suivants : le nombre total de 
mesures N, la moyenne 𝑚, l’écart-type 𝜎 et la loi de probabilité normale 𝑁(𝑚, 𝜎) ; et 

d’autre part, l’échantillon test par : le nombre réduit de mesures 𝑛, la moyenne 𝑥̅, l’écart-
type 𝑠 et la loi de probabilité normale  𝑁(𝑥̅, 𝑠). 

 

b) Estimation ponctuelle d’une grandeur physique : 

Estimer la valeur d’une grandeur physique, comme une incertitude de mesure (∆𝑥), 
ou un paramètre inconnu (𝜃) par un nombre constitue une estimation ponctuelle de 
cette grandeur. 

 

c) Estimateur : 

Quand on veut estimer un paramètre 𝜃 qui dépend d’une variable aléatoire, de 
valeur 𝑥𝑖 (𝑖 = 1 à 𝑛) et de loi de probabilitè 𝑓(𝑥, 𝜃) on doit faire appel à un estimateur 

qui est défini par la fonction 𝑇𝑛 de sorte qu’on peut écrire : 𝑇𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 0 

Un estimateur est dit ponctuel et sans biais, si son espérance mathématique, 

représentée par la moyenne de la variable aléatoire 𝑋 est égale à la grandeur estimée 
𝐸{𝑇𝑛} = 𝜃. De plus, il est dit convergent si lim

𝑛→∞
𝐸{𝑇𝑛} = 0. 

Sachant que : 

𝐸{𝑇𝑛} = ∑ 𝑝𝑖𝑥𝑖
𝑛
1 , où 𝑝𝑖 est la probabilité de 𝑥𝑖 d’un cas discret, et 

𝐸{𝑇𝑛} = ∫ 𝑥𝑓(𝑥)𝑑𝑥
+∞

−∞
 d’un cas continu. 

 

d) Loi Student : 

La quantité définie par :                                                         𝑡𝑛 =
𝑋

√𝑌
𝑛⁄

                                (I.45) 
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où X est une variable aléatoire de la fonction de Gauss normalisée N(0,1) et Y est une 
variable aléatoire de la fonction de Chi-deux (χ2) à n degré de liberté. 

tn suit une loi de Student de variable aléatoire à n degré de liberté. 

La densité de probabilité est : 
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Où k est une constante définie par : 
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   est la fonction Gamma. 

Dans le cas où m et σ sont inconnues, l’estimation conjointe de la moyenne et de 
l’écart-type nous emmène à introduire l’estimateur ponctuel, convergent et sans biais 

de la moyenne et de la variance définies par x  et s2 respectivement. 
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Soit Z une variable aléatoire du Chi-deux (χ2) à n – 1 degré de liberté définie par : 
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Alors Y définie par : 
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Est une variable aléatoire du Chi-deux (χ2) à n – 1 degré de liberté. 

Et la quantité définie par : 
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représente une variable aléatoire de Student à n – 1 degré de liberté. 

 x  est alors donnée par la relation suivante : 
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Il en résulte que l’intervalle  ba, , centré sur x  et de longueur 
n

t2
 contient le point 

d’abscisse m avec la probabilité   selon : 

 

                              












n

txm
n

txbam Pr,Pr                                      (I.55) 

Les valeurs de nt ,  ou ng ,  correspondantes   s’obtiennent par lecture de la table 

de Student de la dite "Table de t Student". 

 

I.3.6. Détermination du taux de présence  (%) : 

Si 0x  est la variable absolue commune à – 0x  et + 0x , et A l’aire comprise entre – 0x  

et + 0x  et la courbe  1,0Ny   et si B l’aire comprise entre la courbe y  et l’axe Ox , alors 

le taux   de présence ou niveau de confiance correspondant à 0x  est donné par 

l’expression : 
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La valeur  est toujours comprise entre 0 et 1. 

 

D’une manière générale la courbe en cloche de Gauss (Figure I. 13) permet ainsi 

de calculer toute probabilité dP de trouver une erreur dans l’intervalle  bd 000 ,    

présentée par l’aire hachurée de la (Figure I.15). 

Si on écrit l’équation (I.36) de la courbe de Gauss sous la forme équivalente 
suivante : 
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  alors :     



k

1
                  (I.59) 

 

Quand la précision augmente, donc 12 kk  , la courbe devient aigue, alors le nombre 

des grands erreurs diminue. ""k  est un paramètre appelé "mesure de la précision", et 

  devient un paramètre qu’on peut alors appeler "mesure de l’incertitudd". 

L’écart-type σ, fixe l’ordre de grandeur des déviations de x  que l’on peut atteindre 

avec une probabilité non négligeable (Figure I.15). En intégrant la distribution de Gauss 

entre deux bornes symétriques par rapport à la valeur moyenne x , on trouve que dans 

l’ensemble des répartitions observées : 

* 68% des cas ont un .1x . 

** 95.8% des cas ont un .2x . 

*** 99.9% des cas ont un .3x  

 

I.3.7. Intervalle et niveau de confiance : 

Dans le cas où nous pourrons estimer la vraie valeur vx , de la grandeur mesurée 

avec α chance sur cent d’être située dans un éventail de mesures encadrant la mesure, 
alors cet éventail de valeurs sera appelé "intervalle de confiance". Cet intervalle est 

déterminé par les deux valeurs extrêmes  xx   et  xx   et est noté par : 

                                  xxxxba  ,,                                                                                  (I.59) 

 

 

Figure I.16 : Représentation de l’intervalle de confiance. 

 
Figure I.15 : Calcul de la densité de probabilité dP 

de trouver une erreur dans l’intervalle  bd 000 ,    

(aire hachurée). 
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I.3.8. Courbe de répartition : 

 

 

I.3.9. Détermination de l’incertitude par la méthode de l’étendu : 

Dans le cas où le nombre des résultats est réduit à quelques mesures, on peut 
calculer l’incertitude par la méthode de l’étendue ω. 

 

a) Définition de l’étendue ω : 

On appelle étendue ω la différence entre le plus grand et le plus petit des résultats : 

                                                                 minmax xx                                                    (I.61) 

 

b) Méthode de l’étendue : 

L’incertitude x  est donnée par l’expression : 

                                                    .,nqx                                                                         (I.62) 

où minmax xx  , et nq , , comme nt ,  et ng ,  est un facteur tabulé qui dépend aussi du 

niveau de confiance α et du nombre de mesure n. 

 

I.3.10. Exemples de quelques valeurs des paramètres tabulés : 

Les deux tableaux suivants (Tableau I.5) et (Tableau I.6) tirés de la littérature 
classique, représentatifs et indicateurs, donnent à titre d’exemple quelques valeurs des 

paramètres  nt , ,  ng ,  et  nq ,   pour deux niveaux de confiance α, l’un égale à 95% et  

 

Elle représente la fonction  x  où le 

taux de présence, exprimé en pourcent 
% et est porté sur l’axe des ordonnées. 

Les résultats des mesures ix  seront 

portés sur l’axe des abscisses Ox . 

On remarque alors que, lorsque x  
tend vers l’infini, α tend vers une valeur 
limite de 100%. 

 
Figure I.17 : Courbe de Gauss 

associée à celle du taux de 
répartition. 
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l’autre égale à 99%. 

Les 𝑡𝛼,𝑛 s’obtiennent par lecture de la table de student de la loi dite du "t student". 

Les 𝑔𝛼,𝑛 sont ensuite calculées par la relation (I.63) : 

                                                  𝑔𝛼,𝑛= 
𝑡𝛼

√𝑛
                                                               (I.63) 

 

Et les 𝑞𝛼,𝑛 sont données par les tables relatives à la méthode de l’étendue. 

 
Tableau I.5 : Un premier exemple de détermination des constantes de Student, tα,n et gα,n 
en fonction de n, tirées des tables préétablies et qui correspond à deux intervalles de 

confiance 95% et 99%. 

 

 

 
Tableau I.6 : Un deuxième exemple de détermination des constantes tabulées de qα,n de la 

méthode de l’étendu en fonction de n et qui correspond aux même intervalles de confiance 
95% et 99%. 

 

 

I.4. ECRITURE DU RESUTAT DE MESURAGE : 

La présentation d’un résultat de mesurage doit être faite sous une forme qui, donne 
un sens précis et une signification claire, concise et réaliste. Pour cela on doit adopter 
l’une des formes d’écriture suivantes : 

(i)       𝑥𝑣 = 𝑥𝑚      à      ∆𝑥 près. 

(ii)      𝑥𝑣 = 𝑥𝑚 ±  ∆𝑥 

(iii)     𝑥𝑚 - ∆𝑥 ≤ 𝑥𝑣 ≤ 𝑥𝑚 + ∆𝑥                                                                                 (I.64) 

(iv)     𝑥𝑣 = 𝑥𝑚     à      
∆𝑥

𝑥𝑚
 × 100      en (%) 

 

n 2 3 4 5 6 7 9 10 15 20 30 50 100 

𝒕𝜶= 95% 12,71 4,30 3,18 2,78 2,57 2,45 2,31 2,26 2,15 2,09 2,04 2,01 2,00 

𝒕𝜶= 99% 63,70 9,93 5,84 4,60 4,03 3,71 3,34 3,25 2,98 2,86 2,76 2,68 2,60 

𝒈𝜶= 95% 9,00 2,50 1,60 1,24 1,05 0,93 0,77 0,71 0,55 0,47 0,37 0,28 0,20 

𝒈𝜶= 99% 54,00 5,70 2,90 2,04 1,65 1,40 1,24 1,12 0,90 0,77 0,64 0,50 0,26 

n 2 3 4 5 6 7 8 9 10 11 12 

𝒒𝜶 = 95% 6,35 1,30 0,72 0,51 0,40 0,35 0,29 0,26 0,23 0,21 0,19 

𝒒𝜶 = 99% 31,18 3,01 1,32 0,84 0,63 0,51 0,43 0,37 0,33 0,30 0,28 
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I.5. REPRÉSENTATION GRAPHIQUE : 

Pour représenter un ensemble de résultants expérimentaux présentant des 
incertitudes sur une courbe (C), on doit tout d’abord se situer par rapport à l’un ou 
l’autre des deux cas possibles suivants : 

a) Si on suppose inconnue la loi qui régit la fonction  xfy   à représenter (c'est à 

dire on ne fait aucune hypothèse sur le tracé de la courbe y ), on déterminera les 

incertitudes ∆𝑥𝑖 et ∆𝑦𝑖 de chaque point (𝑥𝑖, 𝑦𝑖). On place ces intervalles d’incertitudes 
sur tout les points représentés (voir Figure I.18) et ensuite, on essaye de faire passer 
le tracé de la courbe (C) le plus près possibles de l’ensemble des points. Ainsi, D1 et 
D2 figurent parmi les choix les plus probables. Bien entendu, d’autres choix restent 
toujours possibles. 

La courbe qui doit représenter la fonction  xfy   sera alors l’ensemble des points 

qui passe à l’intérieur de toutes les régions définie par 2∆𝑥𝑖 x 2∆𝑦𝑖 (Figure I.19). 

 

b) Dans le cas où la loi qui régit la fonction y = f(x) est connue (Figure I.17), les 

incertitudes limitant les régions  ii yx  2,2  doivent être en accord avec la forme de la 

courbe. 

 

                      
Figure I. 18 : Représentation de la                                       Figure I. 19 : Représentation de la  

      courbe (𝐶)par deux droites                                            courbe d’une loi connue astreinte à  
quelconques D1 et D2 délimitant les                                          passer à l’intérieur de l’aire 
       incertitudes ∆𝑥𝑖 𝑒𝑡 ∆𝑦𝑖                                                                      2∆𝑥𝑖; 2∆𝑦𝑖. 
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Chapitre II 

Nous allons étudier dans ce chapitre, les appareils de mesure électriques à aiguilles, 
dont l’action est directe entre l’application de la grandeur physique à mesurer et 
l’indication du résultat. 

Selon les performances souhaitées et les applications envisagées, on peut 
constater, que du point de vue du principe sur lequel est basé le fonctionnement de 
chaque appareil, celui-ci peut varier assez bien. 

Pour cela, on va tout d’abord, procéder à les regrouper en plusieurs catégories 
distinctes de façon à pouvoir mieux les identifier. 

 

II.1. CLASSIFICATION DES APPAREILS DE MESURE : 

Le seul critère de classification qui va être pris en compte, sera le mode de 
fonctionnement de ces appareils. Nous allons donc, commencer par donner une 
description succincte pour l’ensemble de ces catégories et nous nous limiterons enfin, 
à une étude approfondie aux types d’appareils qui sont usuellement utilisés dans les 
laboratoires, les séances de travaux pratiques (TP) et dans beaucoup de mesures 
domestiques courantes. 

II.1.1. Appareils magnétoélectriques (à cadre mobiles)     : 

Ces appareils utilisent le principe de l’action exercée par un aimant permanent 

produisant un champ magnétique constant 𝐵⃗ , sur un courant électrique circulant dans 
le bobinage, disposé sous forme d’un petit cadre rectangulaire. Ce principe de base 
est schématisé par un symbole standard représentant un aimant en forme de U 
inversé, avec lequel on associe un rectangle pour représenter le cadre mobile. 

Dans le cas où certaines fonctions supplémentaires sont introduites dans la 
construction de l’appareil, ces éléments sont clairement indiqués dans leurs symboles 
d’identification tels que : 

i) La diode de redressement pour les appareils de mesure des grandeurs variables 
(exemple : en alternatif) ; 

 
ii) Les cadres croisés pour représenter les logomètres (qu’on va étudier au chapitre 

VIII) ou  
 
iii) Les thermocouples (avec ou sans contact direct avec le cadre mobile) pour les 

appareils de mesure utilisant l’effet Joule. 
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II.1.2. Appareils électrodynamiques et ferrodynamiques :     

Le fonctionnement de ces appareils repose sur l’action exercée par un courant 

électrique, destiné à produire un champ magnétique 𝐵⃗ , sur un autre courant électrique, 
destiné à fournir la force de mouvement au cadre. Leur sigle est symbolisé par une 
croix représentant deux bobines différentes pour séparer la configuration de la bobine 
courant de celle du cadre mobile (voir chapitre III, §.III.2). La première est disposée de 
façon horizontale alors que la bobine tension est positionnée perpendiculairement à 
celle-ci. Les appareils ferrodynamiques, de même principe que les appareils 
électrodynamiques ne différent de ceux-ci que par la présence d’un circuit 
ferromagnétique associé à la bobine courant pour y canaliser le flux d’induction 
magnétique. On les reconnut par la présence d’un cercle en double ligne entourant le 
symbole précédent. Dans le langage usuel, on utilise le mot électrodynamique indiffère-
ment pour les deux types d’appareils, avec la mention "sans fer" ou "avec fer" pour 
différentier les uns des autre. Il existe aussi, plusieurs autres dérivées de ce type 
d’appareils qui utilisent le même principe de fonctionnement comme les logomètres 
électrodynamiques et ferrodynamiques. D’une façon générale, tous ces appareils 
désignés par le terme "logomètre" sont des appareils à cadres croisés. 

 

II.1.3. Appareils ferromagnétiques :       

À l’inverse des appareils magnétoélectriques, les appareils ferromagnétiques 
utilisent le résultat de l’action exercée par un courant circulant dans une bobine fixe sur 
une pièce mobile ferromagnétique. Celle-ci tend à se déplacer de façon à augmenter 
l’induction propre de la bobine, et par conséquent à faire diminuer sa réluctance. Leur 
symbole est inspiré de ce principe et représenté par une pièce ferromagnétique 
verticale placée à l’intérieur d’une bobine dessinée sous la forme d’un ressort. Dans la 
pratique, il existe diverses réalisations, qui appartiennent à l’une des deux catégories 
suivantes : appareils dits à "attraction" ou appareils dits à "répulsion". 

Pour le type d'appareil á attraction, le principe utilisé est l'action magnétique produite 
par une bobine fixe traversée par un courant sur une palette en fer doux (organe 
mobile), montée sur deux pivots. Cet équipage mobile est muni d'une aiguille et d'un 
dispositif d'amortissement. 

Pour le type d'appareil á répulsion, le champ magnétique 𝐵⃗ , créée par la bobine fixe, 
agit sur deux palettes placées dans ce champ qui subissent une aimantation de même 
sens. La répulsion des deux palettes fait dévier l'aiguille. 

Un appareil ferromagnétique est très simple á construire, robuste, utilisable en 
courant continu et en alternatif. 
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La graduation de son échelle est non linéaire. On peut aussi trouver des logomètre 
ferromagnétiques (reconnus à l’aide du symbole précédent associé à son image), qui 
sont en fait, constitué de deux mécanismes à fer mobile en opposition avec un axe 
comme et sans couple de rappel. Ils permettent de mesure le rapport de deux courants 
alternatifs ou même indiquer que deux courants sont égaux. 

 

II.1.4. Appareils à aimant mobile :  

Ils utilisent le résultat de l’action d’un courant électrique sur une aiguille aimantée. 
Dans certains cas, cette aiguille est remplacée par un fer qui s’aimante sous l’action 
d’un aimant permanent auxiliaire. 

On construit aussi des logomètres à aimant mobile, utilisés comme des ohmmètres, 
à partir de deux bobines fixes perpendiculaires l'une par rapport à l'autre et exerçant 
leur action sur une aiguille aimantée. L'une des deux bobines est parcourue par un 
courant proportionnel à la tension de la source, l'autre par un courant dépendant de la 
valeur de la résistance à mesurer. 

 

II.1.5. Appareils à induction :    

Ces appareils utilisent le résultat de l'action exercée par des courants variables sur 
les courants induits dans une pièce conductrice mobile. Leur symbole est représenté 
par un disque muni d'un barreau, placé indifféremment sur la partie droite ou gauche. 
Ce type d’appareils (cf. Ch-III, §.3) est surtout, utilisé comme appareils intégrateurs 
(compteurs d'énergie) et rarement comme indicateurs (voltmètres, ampèremètres, 
etc...). Ils existent aussi des logomètres à induction, qui sont caractérisés par l'absence 
de couple de rappel, mais avec la présence de deux couples moteurs qui tendent à 
s'opposer mutuellement. La valeur de ce couple est fonction de l'angle de rotation de 
l'équipage mobile. Celui-ci prend une position d'équilibre correspondant à l'égalité des 
couples moteurs moyens. Ils sont symbolisés par un disque, identique à celui du cas 
précédent, mais, muni de deux barreaux, placés de façon symétrique, l’un à gauche et 
l’autre à droite. 

 

II.1.6. Appareils électrostatiques :   

Ces appareils fondés sur un principe purement électrostatique, qui, à partir d’un 

champ électrique 𝐸⃗ , fait appel à l'action d'une force électrostatique 𝐹 , exercée sur les 
armatures d'un condensateur. 
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L’une des armatures est fixe et l’autre est mobile. Leur symbole est schématisé par 
un condensateur où l'armature mobile (sens du mouvement) est munie d'une flèche 
placée de façon perpendiculaire à celle-ci. Ce type d'appareils, utilisés en voltmètre, 
fait appliquer une tension entre les deux plaques de cet appareil. L'une se charge 
positivement et l'autre négativement, ce qui produit une force d'attraction qui tend á 
faire tourner la plaque mobile qui est solidaire d'une aiguille. Ils sont utilisables en 
courant continu et en courant alternatif et possède une échelle non linéaire. 

 

II.1.7. Appareils à lames vibrantes :   

Ces appareils sont conçus de manière à utiliser le résultat de l'action d'un champ 

magnétique 𝐵⃗  résultant, obtenu par la superposition d'un champ constant et d'un 
champ variable parallèle, sur une plaque mince (membrane) ferromagnétique. Leur 
symbole est représenté par une lame verticale fixée à l'horizontal où l'extrémité 
supérieure peut vibrer des deux côtés (vers la droite et vers la gauche). 

 

II.1.8. Appareils bimétalliques :   

Ces appareils utilisent la dilatation thermique due à l'échauffement par effet Joule 
d'un courant électrique pour faire mouvoir une aiguille solidaire à son extrémité libre. 
Leur symbole est donné par deux arcs de disques de couleurs différentes. 

 

II.1.9. Appareils thermiques à fil chaud :    

Leur fonctionnement est basé aussi sur l’allongement d’un fil mince conducteur dû 
à l’effet Joule résultant du passage d’un courant électrique dans ce fil. Ils sont 
symbolisés par un fil horizontal tiré à son milieu vers le sens du mouvement. Les 
appareils thermiques sont non polarisés. Donc, on peut les utiliser indifféremment en 
courant continu comme en courant alternatif. 

 

II.2. QUALITÉS ESSENTIELLES DES APPAREILS DE MESURE ÉLECTRIQUE : 

Dans la pratique, l’emploi d’un appareil de mesure nécessite une parfaite 
connaissance de ses propres caractéristiques. Ainsi, pour exploiter les qualités d’un 
appareil de façon optimale, il faut utiliser de manière rationnelle les diverses 
informations données par son constructeur. Les limites de ces capacités vont être 
définies à partir d’un certain ensemble de qualités qu’on va essayer de présenter 
succinctement. 
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II.2.1. La fidélité : 

Elle représente la qualité de l’appareil à donner la même indication pour la même 
valeur de la même grandeur. Cette fidélité devient maximale quand les petites 
variations d’indication deviennent imperceptibles à un observateur placé dans les 
meilleures conditions de mesure. 

 

II.2.2. La justesse (précision) : 

La précision caractérise l’indication d’une valeur mesurée, la plus proche possible 

par rapport à la vraie valeur 𝑥𝑣. On admet que la justesse est optimale quand l’écart 
𝑥𝑚 - 𝑥𝑣 devient inférieur au seuil différentiel de la perception. Ce seuil est appelé aussi 
"résolution". 

 

II.2.3. La sensibilité : 

C’est la capacité de l’appareil à déceler les petites variations de la grandeur à 
mesurer. Pour que cette grandeur soit mesurable, il faut que la déviation qu’elle 
provoque soit nettement claire et détachable du bruit de fond qui l’accompagne. Cet 
état représente le seuil de la sensibilité. 

 

II.2.4. La robustesse : 

C’est la capacité de pouvoir supporter les surcharges dues à des déviations maximales 
non destructives de l’aiguille. Pour renforcer la tenue de ces appareil vis-à-vis de son 
utilisation sous les conditions d’exploitation les plus extrêmes, il faut qu’ils soient munis 

d’une double isolation, indiquée par le symbole suivant : , et placé à l’arrière de 

l’appareil. 

 

II.2.5. La rigidité diélectrique : 

 

Elle représente la valeur de l’intensité du champ électrique ( 𝐸⃗⃗  ⃗ ) à laquelle se produit 
le claquage de l’isolation de l’appareil. Cette caractéristique est souvent symbolisée 
par une étoile à l’intérieur duquel est inscrit un nombre qui représente en (kV), la 
tension nominale de claquage de l’isolation. 

 

La tension d'isolement entre les deux bornes est de 2 kV.  

La tension de claquage est de l’ordre de 500 V. 
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II.2.6. La rapidité d’indication : 

C’est l’aptitude de l’appareil à suivre les variations de la grandeur à mesure. Cette 
aptitude sera caractérisée par le minimum de temps entre la mesure et l’indication 
finale du résultat. 

 

II.2.7. La fiabilité : 

Elle se traduit par la conformité de l’appareil à assurer le bon fonctionnement indiqué 
par le constructeur. Cette qualité peut être déterminée par des moyens de contrôle 
statistiques, qui permettent d’établir une valeur moyenne des performances. 

 

II.2.8. Le calibre : 

Il représente la plus forte valeur mesurable par l'appareil. La plupart des appareils 
possèdent plusieurs calibres. La gamme de mesure réalisée par l'appareil est alors 
définie par les deux calibres extrêmes (Ca min) et (Ca max). 

 

II.2.9. La classe : 

Elle traduit la précision de l'appareil (cf. Ch.I.§ 2.3). On peut distinguer différents 
types d'appareils selon leur classe : 

- Appareils de calibrage ou étalons : leur indice de classe C est compris entre 0,05 
à 0,1. 

- Appareils de précision (de laboratoire) : leur indice de classe C est compris entre 
02 à 0,5. 

- Appareils de contrôle (de laboratoire) : leur indice de classe C est compris entre 
1,0 à 1.5. 

- Appareils indicateurs (grand publique) : leur indice de classe C est compris entre 
2,5 à 5. 

 

II.3. MÉCANISMES DE FONCTIONNEMENT DES ÉQUIPAGES MOBILES : 

Comme il existe de nombreuses formes d'équipages mobiles, nous allons limiter 
notre étude à ceux du type à cadre mobile de forme rectangulaire. Ils comprennent 
essentiellement un circuit mobile sur lequel agissent des actions magnétiques et des 
forces antagonistes de nature mécaniques. Sous l'effet de l'ensemble, l'équipage 
mobile atteint une position d'équilibre. En pratique, le mouvement est toujours une 
rotation autour d'un axe fixe, l'angle θ représente la position finale d'équilibre. 
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II.3.1. Équation du mouvement : 

On va considérer que l'équipage mobile occupe les états d'équilibre final et initial 
(avec ou sans excitations extérieures), en un instant t, en effectuant une rotation d'un 
angle θ(t). Les couples qui se développent durant ce processus sont : 

- J 
𝒅𝟐θ

𝒅𝒕𝟐
 qui représente le couple d'inertie, et J est appelé le moment d'inertie. 

- A 
𝑑θ

𝑑𝑡
 représente le couple d'amortissement et A, un coefficient supposé constant 

dû aux divers types de frottements. 

- B𝜃 couple de rappel qui, en s'opposant au mouvement du cadre mobile, tend à 
ramener l'équipage dans une position d’équilibre θ = 0. 

- Γ(t) couple moteur dû aux forces d'excitations extérieures. 

 

La condition d'équilibre dynamique nous permet d'écrire : 

                                               tB
dt

d
A

dt

d
J  


2

2

                                                   (II.1) 

 

II.3.2. Mouvement libre : 

En supposant que l'excitation extérieure est nulle Γ(t) = 0 et que l'équipage mobile 
est laissé en mouvement à lui-même. 

Si on pose : 
J

B
et

J

A
 2

0      2   

L’équation (II.1) devient : 

                                               0
2

2

 


B
dt

d
A

dt

d
J                                                        (II.2) 

 

a) Mouvement non amorti : 

Si A = 0 (mouvement non amorti) donc δ = 0, la solution de l’équation différentielle 
prend la forme suivante : 

                                                θ(t) = θ₀ cos (ω₀t + φ₀)                                                        (II.3) 

où θ₀ et ϕ₀ sont des constantes déterminées par les conditions initiales. 
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0

0

2




T  est appelée période propre de l’équipage. 

 

b) Mouvement amorti : 

Dans ce cas A ≠ 0 et la solution de l’équation différentielle peut présenter trois cas 

possibles : 

1ᵒ) 𝜟′ ˂ 0 

Cas de faible amortissement (δ ˂ ω₀). La solution prend alors la forme suivante : 

                                           θ(t) = θ₀𝑒−𝛿𝑡cos (ω₀t + ϕ₀)                                         (II.4) 

où l’on a posé : 

                                               2122

0  a                                                                         (II.5) 

qui représente la pseudo-pulsation et θₐ ainsi que ϕₐ sont des constantes déterminées 
à partir des conditions initiales. 

a

aT


2
  est appelée pseudo-période. 

Dans le cas général, on a (Tₐ ˃ T₀) 

 
Figure II.1 : Régime oscillatoire amorti (δ ˂ ω₀). 

 
 

 

L’amplitude de la courbe représentée sur la (Figure II.1) décroît exponentiellement 
avec un taux fixe défini à partir du rapport de deux élongations successives qui est 
toujours constant : 
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                                                        (II.6) 

 

Le décrément logarithmique 𝜆 est défini comme étant le rapport de deux amplitudes 
successives du même côté. On aura alors : 

                                           a

i

i

i

i

i

i T











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


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













 1

2

12

log2loglog                  (II.7) 

Donc : 

                                            aT                                                                                             (II.8) 

 

2°)  𝜟′ ˃ 0 

Cas de fort amortissement (𝛿 ˃ 𝜔₀). L’équation caractéristique admet deux racines 
réelles et la solution générale s’écrira alors : 

 

                                            
    





 





 


t

c

t

b eet
.. 2

0
22

0
2 

                             (II.9) 

 

où les constante θb et θc peuvent être déterminées à partir des conditions initiales. 

Dans ce cas le mouvement de l’équation est dit : apériodique. 

 

3°)  𝜟′ = 0 

Cas d’amortissement critique (δ = ω₀). L’équation caractéristique admet une racine 
double et la solution générale peut alors être écrite sous la forme : 

 

                                            ed

t

b tet    
                                                               (II.10) 

 

où les constantes θd et θe sont aussi déterminées à partir des conditions initiales. 
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Le mouvement de l’équipage est dit : ʺmouvement apériodique critiqueʺ et est 
représenté (Figure II.2) Ci-dessous par des courbes analogues à celles du cas 

précédent 𝜟’ ˃ 0. 

 
Figure II.2 : Différentes courbe du retour à l’équilibre : 

1-) courbe du régime oscillatoire propre, harmonique et non amorti,      2-) courbe du régime 

oscillatoire amorti, pseudopériodique si (δ < ω₀),      3-) courbe du régime apériodique 
critique, (δ = ω₀)      et      4-) courbe du régime apériodique, si (δ > ω₀). 

 

La seule différence par rapport au mouvement apériodique est que : si on écarte 
l’équipage de sa position d’équilibre, c’est le mouvement apériodique critique qui, toute 
chose égale, le ramène le plus rapidement possible vers la position θ = 0. On 

constatera qu’il suffit d’un temps t = 1.5*T pour réduire le rapport θ₀/θn = 10³. 

 

c) calcul de la première amplitude θ₁ du mouvement de l’équipage : 

Si, à l’instant initial, correspondant à la position θ = 0, on lance l’équipage d’une 

vitesse 


 , alors la première amplitude θ₁ est proportionnelle à cette vitesse initiale : 

- Dans le cas du mouvement pseudopériodique, cette première amplitude vaut : 
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où 
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
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

 correspond au cas où le mouvement non amorti. 

- Dans le cas du mouvement apériodique critique (δ = ω₀), cette première amplitude 
devient : 
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- Dans le cas du mouvement apériodique, on aurait : 
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II.3.3. Mouvement forcé : 

Nous allons étudier uniquement deux cas fondamentaux qui correspondent aux 
couples moteurs constants et variables, mais périodiques. 

 

a) Couples moteurs constants   0GtG   : 

La solution générale de l’équation différentielle du mouvement de l’équipage, quel 
que soit le régime, est composée de la solution de l’équipage homogène déjà vue 
précédemment et de la solution particulière, qui fait intervenir le second membre. Cette 

solution particulière prendra la forme : DGp 0 . Les courbes qui représentent le 

mouvement de l’équipage sont obtenues en décalant de DG0  celles du cas étudié 

précédemment pour les trois régimes transitoires. 

        

Figure II.3 : Mouvement                                           Figure II.4 : 1- Mouvement apériodique 

Pseudopériodique (δ < ω₀)                                         2- Mouvement apériodique critique. 
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b) Couples moteurs constants    TtGtG   : 

 tG peut être décomposée en série de Fourier selon : 

                                  n

n

n tnGGtG   
1

0 cos                                                         (II.14) 

Avec :                      
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                             dttntG
T

G
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t
nn 



  sin
2

sin  

Où nnG cos  et nnG sin  représentent les paramètres na  et nb  respectivement 

selon l’autre forme équivalente du développement en série de Fourier : 

                                  
n

nn tnbtnaGtG
1

0 sincos                                             (II.16) 

 

La solution particulière  tp  devient alors : 

                                       
n

nnnp tnF
D

G
t

1

0 cos                                        (II.17) 

Avec : 
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et                                       2
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L’étude du spectre fréquentiel du rapport nn GF /  et de ntg  nous amène à 

considérer deux cas particuliers très intéressant : l’amortissement critique  0  , 

pour assurer la disparition la plus rapide du terme transitoire et l’amortissement optimal, 

caractérisé par le terme  2/0  . 



Les appareils de mesure                                                                                                                             43 
 

 

i) Amortissement critique  0   : 
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ii) Amortissement optimal  2/0   : 
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Dans la pratique, l’amplitude des harmoniques de  tG  est généralement petite par 

rapport à celle de la fondamentale. Donc, une erreur sur nn GF /  pour l’harmonique 

d’ordre n n’a qu’une petite influence sur le résultat global. Ainsi, un déphasage pour 

l’harmonique d’ordre n n’a aussi qu’un décalage de nn /  par rapport à la 

fondamentale. C’est pourquoi, juste qu’avec un amortissement optimal, on peut 

admettre que  tp  est presque l’image de  tG , même la fondamentale est de l’ordre 

de 0.2* 0f  à 03* 0f  de l’équipage. Mais, si les  , sont importantes, alors 0/n  

admissible devient complètement petit. 

Remarquons enfin, que si le transitoire disparaît moins rapidement avec 
l’amortissement optimal qu’avec l’amortissement critique, on peut constater cependant, 
que la durée pratique de ce terme est du même ordre de grandeur dans les deux cas. 

 

c) Cas particulier : 

Dans le cas où  tG  est une fonction sinusoïdale : 

                                              tPtG cos.2

0                                            (II.22-a) 

 

Il existe une solution particulière      tAtp cos.  ayant la même période. La 

solution générale pour  0   sera alors : 
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                             tAtet aa

t

ap cos.cos..                                  (II.22-b) 

 

Avec le temps, l’oscillation libre disparaît et il ne reste plus que l’oscillation forcée 

qui est indépendante des données initiales. L’amplitude A  et la phase   de l’oscillation 

forcée se déterminent par identification : 

𝐴(𝜔0
2 − 𝜔2) = 𝑃𝜔0

2 cos(𝜀 − 𝛾) 

                                             et                                                                              (II.23) 

2𝐴𝛿𝜔 = 𝑃𝜔0
2 sin(𝜀 − 𝛾) 

D’où : 

𝐴

𝑃 
= 𝑃𝜔0 

2 [(𝜔0
2 − 𝜔2)² + (2𝛿𝜔)²]−1/2 

                                              et                                                                             (II.24) 

𝐴𝑚𝑎𝑥

𝑃
= 𝑃𝜔0

2[2𝛿(𝜔0
2 − 𝛿2)]−1/2 

Pour 𝜔² = (𝜔0
2 − 2𝛿2). Les courbes représentant l’amplitude 𝐴(𝜔) et la phase 

(𝜀 − 𝛾)(𝜔) en fonction de 𝜔 sont données par les figures II.15 et II.16 suivantes : 

Figure II.5 : Taux d’amplitude en fonction de        Figure II.6 : Déphasage en fonction de 𝑥 

pour différentes valeurs de 𝛿/𝜔0 : 

1) 𝛿/𝜔0 = 0 ;       2) 𝛿/𝜔0 = 0,2 ;       3) 𝛿/𝜔0 = 0,3 ;        4) 𝛿/𝜔0 = 0,5       et       5) 𝛿/𝜔0 = 1. 

 



Les appareils de mesure                                                                                             45 
 

 

- Si 𝜔𝑎 > 𝜔0 le cadre reste immobile. 

- Si 𝜔𝑎 < 𝜔0 les longueurs A et P sont égales. 

- Si 𝜔² = (𝜔0
2 − 2𝛿2) l’amplitude est maximale. On dit qu’il y a résonance. Amax  et 

d’autant plus grand que 𝛿/𝜔0 est faible. 

- Si 𝜔 et 𝜔0 sont voisines, la solution 𝜃(t) devient représentative d’un mouvement 
sensiblement périodique, de période T = 2𝜋/𝜔 et l’amplitude varie lentement en fonction 
du temps. 

- Si 𝛿 = 0, cette amplitude possède une variation périodique de période T’ = 

2𝜋/(𝜔0 − 𝜔) : c’est le phénomène de battement (voir Ch V. §.B.3). 

- Si 𝛿 ≠ 0, les battements s’atténuent pour laisser place à l’oscillation forcée. 

 

II.4. EXEMPLE D’ILLUSTRATIONS SUR LE CADRAN DE L’APPAREIL : 

Un certain nombre d’indications permettant de donner les principaux 
renseignements relatifs à l’utilisation de l’appareil, sont inscrites sur le cadran de celui-
ci. La Figure II.7, suivante donne une illustration de quelques exemples d’indications 
et les informations qu’elles en contiennent : 

 

 

 

 

 

 

 

 

 

Figure II.7 : Exemple d’illustrations inscrites sur cadran d’appareil à aiguille. 

 

Sur le cadrant d'un appareil de mesure analogique, le constructeur indique souvent, 
le type de l'appareil, la nature du courant, la tension d'épreuve diélectrique, la position 
de lecture, la classe de précision, la sensibilité, etc.… 
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Dans ce qui suit, nous allons résumer ces principaux symboles trouvés pour la 
plupart des appareils 

 

Selon la Figure II.7, ces inscriptions signifient que : 

a) Cet appareil est prévu pour être utilisé en régime continu et alternatif à la fois. Le 
trait indique le continu et la sinusoïde indique l’alternatif. 

 

b) La tension d’isolement du diélectrique est de deux kilovolts (2 KV). Plus de détails 
ont été évoqués précédemment à la page 35. 

 

c) La position d’utilisation correcte de l’appareil est la position horizontale. D’autres 
positions sont encore possibles. 

 

d) L’indice de classe en régime continu est de 0,5. C’est un appareil de précision 
(voir encore la page 35) 

 

e) L’indice de classe en régime variable (alternatif) est de 1. Pour différencier ces 
deux indices, on inscrit généralement, en noir l’indice de classe qui correspond au 
régime continu et en rouge celui du régime alternatif. Dans le cas où la même couleur 
est utilisée on attribue l’indice le plus élevé au régime variable (CContinu < Caltetnatif ). 

 

f) L’indication C45 est la référence à la norme définissant les spécifications 
techniques recommandées par la Commission électrotechnique Internationale (C.E.I), 
article 45 100. 

 

g) Cet appareil est de type magnétoélectrique avec redresseur. C’est-à-dire, on a la 
possibilité de l’utiliser en continu comme on peut l’utiliser en alternatif. 

 

h) L’appareil est un voltmètre. 

 

i) La valeur indiquée représente la résistance spécifique (caractéristique) qui est 
exprimée en [Ω/V]. 
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La résistance interne qui correspond à un calibre déterminé Ca s’obtient en 
multipliant ce calibre par la résistance caractéristique (Ri = Rsp.Ca). 
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Chapitre III 

 

III.1. LE GALVANOMÈTRE À CADRE MOBILE : 

On utilise les galvanomètres pour mesurer les courants très faibles (< 1 µA). Pour les 
courants ayant des intensités plus élevées, on fait appel aux ampèremètres qui ne 
diffèrent de ceux-ci que par des détails techniques. Le galvanomètre représente 
l’appareil "modèle" pour toute la gamme des appareils magnétoélectriques, car son 
étude physico-électrique, du point de vue pédagogique, est la plus intéressante à faire 
dès le départ. Les autres appareils magnétoélectriques ne sont en fait, que des dérivées, 
c’est-à-dire des structures ayant subis quelques petites modifications supplémentaires 
ajoutées à la structure de base représentant celle du galvanomètre. 

 

III.1.1. Principe de fonctionnement : 

Un galvanomètre G, à cadre mobile, comprend essentiellement un circuit mobile 
parcouru par un courant à mesurer placé dans un champ magnétique fixe. On 
oppose aux actions magnétiques développées, des forces antagonistes de nature 
mécanique. Sous l'effet de l'ensemble, l'équipage mobile atteint une position 
d'équilibre. En pratique, le mouvement est toujours une rotation autour d'un axe fixe. 
L'angle de rotation θ entre les deux positions d'équilibre initiale et finale (en l'absence 
et en présence du courant respectivement) est fonction de l'intensité. 

 

III.1.1.1. Le champ magnétique : 

Le champ magnétique est créé par un aimant permanent en forme de U (Figure 
III.1), dont les pièces polaires N et S sont des portions d'un cylindre. On dispose entre 
elles un cylindre en fer doux, laissant un entrefer de l'ordre du millimètre. 

Dans le fer doux, les lignes de champ sont rectilignes et parallèles (Figure III.2), 
alors qu'elles sont perpendiculaires à la surface latérale du cylindre en tout point 
de l'entrefer. Ainsi, avec cette disposition, on arrive à construire un appareil dont 

le champ magnétique 𝐵⃗ , est toujours uniforme, radial et constant à l’intérieur du 
cylindre quel que soit la position prise par le cadre mobile. L’intensité du champ 

magnétique 𝐵⃗  pour les appareils d'utilisations courantes peut atteindre le tesla. 
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Figure III.1 : Circuit magnétique constitué d'un             Figure III.2 : Forme de ligne de champ 
          aimant permanent en forme de U                                 dans l'entrefer et le fer doux. 

 

III.1.1.2. L’équipage mobile : 

Le cadre mobile est constitué d'un enroulement de forme rectangulaire d'un fil 
composé d'un alliage de cuivre amagnétique émaillé (Figure III.3). Les dimensions du 
cadre sont choisies dans l'ordre des dimensions suivantes : hauteur : b ≈ 25 mm ; 
largeur : a ≈ 10 mm ; nombre de spires : n ≈ 200 à 300 faites d'un fil de diamètre : 
Φ ≈ 3 à 20/100 du millimètre et de moment d'inertie : J ≈ 10-8 Kg m². 

Le cadre est suspendu par un fil de torsion en forme de ruban conducteur plat 
caractérisé par les grandeurs suivantes : Hauteur : Z ≈ 20 mm ; largeur : a' ≈ 0,2 à 
0,5 mm ; épaisseur : e ≈ 3 à 4/100 du millimètre et sa constante de torsion : C ≈ 4 
10-8 N.m.rd-1. 

Sur l'axe du cadre, on peut fixer soit : 

i) une aiguille dont les rotations sont celles qui parcourent un cadran muni d’échelle 
linéairement graduée, soit, 

ii) Un petit miroir concave M rigidement fixé sur l'axe du cadre, qui donne à partir 
d'une source lumineuse une image sur une règle graduée (Figure III.3). 

Figure III.3 : Cadre mobile disposé sur un                            Figure III.4 : Représentation du couple 
support de forme cylindrique en fer doux.                                   moteur qui agit sur le cadre mobile. 
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III.1.2. Bilan des couples exercés sur le cadre : 

III.1.2.1. Le couple moteur électromagnétique : 

Des éléments de courants 𝐼𝑑𝑙⃗⃗⃗⃗  ⃗ et 𝐼𝑑𝑙′⃗⃗ ⃗⃗ ⃗⃗   pris autour des points M et M' des brins 
verticaux (Figure III.4) sont soumis à des forces de vecteurs : 

 

                                   BIdldf


           et        BlIdfd


                                              (III.1) 

 

Les moments par rapport à 𝑂𝑧⃗⃗⃗⃗  ⃗ des forces (M, 𝑑𝑓⃗⃗ ⃗⃗ ) et (M’, 𝑑𝑓′⃗⃗⃗⃗⃗⃗ ) sont : 
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2


       et         ld

a
BIkfdMOmd z
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
      (III.2) 

 

En sommant sur la longueur b de chaque brin et pour les N spires, on obtient : 

 

                              nb
a

BImz 
2

              et              nb
a

BImz 
2

                           (III.3) 

 

Or : a.b = s et B.s = Φ0, est le flux dans une seule spire. Donc, le couple moteur 
électromagnétique Γm a pour expression : 

 

                                                      Im 0                                                                     (III.4) 

 

III.1.2.2. Le couple de freinage induit : 

Si on excite le cadre par un courant continu I0, il commence à tourner et change 
de position d'équilibre. Pendant cette phase transitoire du mouvement qui sépare 
l'état initial (ti = 0 ; Ѳi = 0) et l'état final (tf = t ; Ѳf = Ѳe), le cadre en raison de son 
mouvement dans un champ magnétique, débite un courant induit i (loi de Lenz) 
dans le circuit électrique. 

Si on suppose que ce circuit est composé de la résistance interne rg du cadre, en 
série avec une certaine résistance r interne du générateur de f.e.m induite e. 
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Le courant i est alors donné par : 

                                                           
rr

e
i

g 
                                                   (III.5) 

Le couple de freinage, de nature aussi électromagnétique, induit par cette f.e.m e, 
sera alors égale à : 
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Pour calculer e, on fait d’une part, circuler le champ électromoteur mE


 le long d’un 

contour d’une spire, supposée fermée (voir Figure III.5, ci-dessous) où les conditions, 
à la limite sont requises pour appliquer la relation de circulation donnée par la relation 

suivante :  
c

m ldEe


 ; et d’autre part, on sait que : BvEm


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 sont perpendiculaires deux à deux. 
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donc :                                                                                                                                                        (III.7) 

                                                           bvBe 2  

 

Figure III.5 : Représentation du champ électromoteur                   Figure III.6 : Relation de passage 

en quadrature avec l’induction B


 et la vitesse v


                      entre la vitesse linéaire et angulaire. 
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Et comme 
dt

da
v



2
  (voir Figure III.6), en même temps, si on considère les n spires 

du cadre, on aura donc : 
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Alors : 
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Le signe "-" montre bien que ce couple induit est de nature à s’opposer au couple 

moteur : Im 0 , qui lui a donné naissance. 

 

III.1.2.3. Le couple de torsion : 

Le cadre est maintenu en haut et en bas par un ruban tissé incluant les fils 
conducteurs du cadre. Quand ce dernier est en mouvement, il subit par la torsion des 
fils de suspension un couple donné par : 

                                                         Ct                                                                   (III.10) 

où C est la constante de torsion. 

 

III.1.2.4. Les couples de frottements : 

On va supposer que les frottements secs (mécaniques sont négligeables). Seuls, 
seront pris en compte, les frottements visqueux (fluide) dus à l’air, et qui représentent 

un couple équivalent proportionnel à la vitesse angulaire 
dt

d
 du cadre, qu’on écrit : 

                                                         
dt

d
hf


.                                                               (III.11) 

Où h est une constante positive. 

 

III.1.3. Étude de l’équation du mouvement du cadre : 

Si J , est le moment d’inertie du cadre par rapport à Oz , et, en tenant compte des 

couples de frottements mécaniques, du couple de torsion et du couple 
électromécanique induit, l’équation du mouvement de ce cadre s’écrit alors : 
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














   (III.12) 

Dans la majorité des appareils usuels, on peut admettre que le coefficient des 

frottements fluides ℎ est négligeable devant le coefficient d’amortissement dû au 
courant 𝑖. Ce qui permet d’écrire l’équation précédente (III.12) sous la forme : 

 

                                            
 

IC
dt

d

rrdt

d
J

g

0

2

0

2

2




















                                                       (III.13) 

À l’équilibre, les grandeurs qui varient avec le temps 𝑡 deviennent nulles. On aura 
alors : 

                                                                                 IC e 0                                                                (III.14) 

où 𝜃e est la position finale de l’équipage mobile. 

 

Si on pose : 

                                                rrrrhA gg  2

0

2

0                                     (III.15) 

L’équation (III.13) devient : 

                                                  eCC
dt

d
A

dt

d
J 




2

2

                                             (III.16) 

 

qu’on peut mettre encore sous la forme : 

 

                                                         e
dt

dk

dt

d











0

2

2

2

0

21
                                              (III.17) 

avec 
J

C
2

0   et  
JC

A
k

4

2

  

 

L’allure de la fonction 𝜃e=  𝑓(𝑡) dépend du signe du discriminant de l’équation 
caractéristique (III.18) suivante : 
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                                                        01
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0

 x
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x


                                                  (III.18) 

dont ∆ devient égale à : 

                                        
 

JC
rrg

4

2
2

0 















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
                                                   (III.19) 

qui, selon le signe de ∆, peut se présenter avec les trois régimes suivants : 

 

III.1.3.1. Régime oscillatoire amorti (𝒌 < 1) : 

Le mouvement du cadre sera régit par la solution suivant : 

                
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t
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1sincos1           (III.20) 

avec : 
a

tg



  . On en déduit : 

                                                 te
dt

d
a

t

a

a

e 










  sin

1

2

2






















                                            (III.21) 

Le décrément logarithmique sera alors : 

                                       
2

1

2
1

4
2













A

JC
Ta                                                            (III.22) 

Dans la pratique, on recherche le régime oscillatoire amorti où 
22

0

2  a , mais 

avec un nombre d’oscillations réduit. On a ce qu’on appelle l’amortissement optimum 

lorsque 
2

1
k , ce qui correspond à : 

2

0T
Ta   

 

III.1.3.2. Régime apériodique (𝒌 > 1)  

Le mouvement du cadre obéit à la solution suivante : 
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                                                                          (III.23) 

 

La position d'équilibre  est obtenue au bout d'un temps assez long. Les frottements 

aléatoires interviennent beaucoup, car la vitesse de déplacement de l'équipage est très 
faible lorsqu'on s'approche de l'équilibre. 

 

III.1.3.3. Régime d'amortissement critique (k = 1) : 

Le mouvement du cadre s'effectue selon la solution : 

 

                                                                                                (III.24) 

La valeur de  est pratiquement atteinte au bout d'un temps moins long que dans 

le cas précédent. 

 

On définit la résistance critique extérieure  comme étant la résistance r qui annule 

le discriminant  : 

                                                                                                                    (III.25) 

 

III.1.4. Mesure d'une intensité, sensibilité : 

Si on veut mesurer un courant continu I avec un galvanomètre qui a son équipage 
mobile excité. Ce courant, une fois l'équilibre établi, sera donné par la relation : 

 

                                                                                             (III.26) 

 

Donc, cette mesure peut être le résultat d'une rotation d'une aiguille sur une 

échelle graduée, où un déplacement rectiligne d'un spot lumineux sur une règle 
graduée transparente. 

La méthode optique est principalement utilisée dans les galvanomètres pour sa 
précision, alors que pour les ampèremètres, seulement un équipage à aiguille suffit. 
Ce principe est schématisé sur les (Figures III.7-a et Figure III.7-b) suivantes : 
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Figure III.7-a : Principe de la méthode optique                          Figure III.7- b : Zoom sur la partie  

(spot) dans les galvanomètres de précision                                         encadrée. 

 

Dans le cas où Өe est faible et ne dépasse pas une dizaine de degrés, on peut 
écrire : 

               eeee x
D

C
IDx .

2
2

0










                                                                 (III.27-

a) 

d'où ee Ix .  avec 
C

D 0
0

2 
   et 0  représente la sensibilité du galvanomètre. 

Une étude plus détaillée de σ0 et des moyens mis en œuvre pour faire augmenter 
cette sensibilité doit nécessairement tenir compte du mouvement du cadre vers sa 
position d'équilibre en régime permanent. 

 

III.1.5. Recherche des meilleures caractéristiques du cadre : 

En régime apériodique, caractérisé par le mouvement le plus long que le cadre met 
pour atteindre l'équilibre, on sait que ce prolongement de temps engendre le passage 
prolongé du courant et rende inévitable l'influence des frottements parasites. Pour 
éviter ces risques, on impose au cadre mobile un mouvement pseudopériodique en 
choisissant (r > RCE). 

Cette qualité va nous permettre de réaliser un type bien déterminé de mouvement 
par simple modification d'une résistance. 

Pour qu'on puisse faire augmenter la sensibilité donnée par : 

                                                       
C

D 0
0

2 
                                          (III.27-b) 
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Avec Bban ...0  , alors : on doit peser le poids de chaque terme dans cette dernière 

relation et voir ce qui est possible de faire pour arriver à un compromis final. 

Donc, on doit soit : 

i) Faire augmenter Φ0 : 

Or, cette solution implique l’augmentation de n ou de b, qui fait augmenter J et par 

conséquent fait augmenter C, d’où la diminution de 𝜎0. 

Si on augmente a, alors les pôles de l’aimant N et S doivent s’écarter d’avantage, 
ce qui fait diminuer B. Par conséquent, le véritable moyen permettant de faire 
augmenter Φ0 tient dans l’emploi d’aimant à forte aimantation rémanente. 

ii) Faire diminuer C : 

On obtient comme résultat des fils de suspension fragiles et une période plus 
grande. 

Cette solution est à écarter. 

iii) Faire augmenter D : 

Dans ce cas, on choisit pour D des distances comprises entre 25 à 50 cm, pour 
éviter l’encombrement. Au-delà de ces distances, l’image devient plus large et son 
repérage sera plus délicat. 

Toutes ces considérations conduisent à adopter un compromis très précis pour le 
choix des caractéristiques des constituants des galvanomètres qu’on veut construire. 

Si nous voulons garder la définition générale de la sensibilité : 

di

d
  , qu’on va essayer d’appliquer sous la forme approchée : 

I


  , il est 

souvent utile de l’exprimer en fonction des paramètres accessibles à la mesure : 

 

                                              
J

TRCE

3

3

0

2
                                                                            (III.28) 

 

 est la résistance critique extérieure, 0T  est la période propre du cadre et on doit 

supposer que 𝑟𝑔 est suffisamment petite pour qu’on puisse la négliger. 
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III.2. L’AMPÈREMÈTRE À CADRE MOBILE : 

Pour mesurer les intensités qui dépassent les dizaines de microampères, on doit 
faire appel aux ampèremètres qui sont des dérivés du galvanomètre à cadre mobile. 
Cette fois-ci, le cadre n’est pas suspendu, mais supporté par deux pivots. L’appareil 
peut fonctionner dans toutes les positions, le couple de rappel est produit par des 
ressorts spiraux servant également à l’amené du courant. Les rotations sont indiquées 
par une aiguille légère fixée à l’équipage mobile et se déplace devant un cadre muni 
d’une échelle graduée. 

 

III.2.1. Structure électrique : 

En réalité, un ampèremètre est construit à partir d’un galvanomètre G de résistance 
interne 𝑟𝑔 et d’une résistance prise égale à la résistance critique extérieure 𝑅𝑐, 

branchée en parallèle sur 𝑟𝑔. Cette résistance 𝑅𝑐 Est fractionnée en plusieurs parties 

appelée résistance shunt 𝑅𝑠 (Fig-III.8 et 9) ci-dessous. 

 

                    
Figure III.8 : Structure électrique simplifiée                   Figure III.9 : Schéma équivalent de 

       d’un ampèremètre multi-calibres.                          l’ampèremètre en fonctionnement. 

 

Chaque résistance shunt 𝑅𝑠𝑖
 est munie d’une prise extérieure 𝐴𝑖 définissant le 

calibre. Avec ce cas de la Figure, la résistance parallèle à 𝑟𝑔 devient celle qui se trouve 

entre la borne commune 𝐴0 et la prise calibre 𝐴𝑖 ; le reste devient en série avec 𝑟𝑔. La 

résistance interne 𝑅𝑖 de l’ampèremètre est la résistance équivalente : 

 

                                    
  

s

cg

scgs

i R
Rr

RRrR
R 




                                                           (III.29) 

𝑅𝑠 est petite devant 𝑟𝑔 + 𝑅𝑐 pour les petits calibres. 

Si on veut mesurer un courant continu 𝐼 par l’ampèremètre, il passe dans le 
galvanomètre le courant 𝐼0, qui s’écrit sous la forme : 
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                                                                  (III.30) 

Donc, on voit que 𝐼  et  𝐼0 sont proportionnels. La constante de proportionnalité 𝛼 est, 
bien entendu prise en compte lors de la graduation de l’échelle. 

 

III.2.2. Equation de mouvement du cadre de l’ampèremètre : 

En choisissant pour le régime transitoire, le cas d’amortissement critique, en prenant 

r = 𝑅𝑐, le facteur d’amortissement ∅2
0/(𝑟𝑔 + 𝑅𝑐) devient indépendant de 𝑅𝑠. Donc, 

l’équation du mouvement du cadre appliquée à l'ampèremètre devient : 

 

                       𝐽
𝑑2𝜃

𝑑𝑡2 + (ℎ +
𝜃0

2

(𝑟𝑔+𝑟)
)

𝑑𝜃

𝑑𝑡
+ 𝐶∅ = 𝜃0𝐼0 =

𝜃0𝑅𝑠

𝑟𝑔+𝑅𝑐
𝐼 = 𝜃0𝐼                           (III.31) 

 

III.2.3. Étude de la sensibilité : 

Quand le cadre atteint sa position d'équilibre 𝜃𝑒 on pout écrire : 

 

                                                𝐶𝜃𝑒 =
𝜃0𝑅𝑠

𝑟𝑔+𝑅𝑐
𝐼                                                    (III.32) 

 

et en posant :  𝜎 =
𝜃𝑒

𝐼
 𝑒𝑡 𝜎0 = 𝜃0/𝐶 

 

on en déduit :                        𝜎 = 𝜎0
𝑅𝑠

𝑟𝑔+𝑅𝑐
                                                (III.33-a) 

De plus, si on admet que Ri = Rs, la résistance interne de l'ampèremètre Ri 

devient directement proportionnelle à la sensibilité  𝜎: 

𝑅𝑖 = (𝑟𝑔 + 𝑅𝑐)
𝜎

𝜎0
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III.3. LE VOLTMÈTRE À CADRE MOBILE : 

D'une manière analogue à celle adoptée pour la construction des ampèremètres, 
les mêmes conditions concernant les caractéristiques du galvanomètre restent 
valables pour la construction des voltmètres. 

 

III.3.1. Structure électrique : 

Un voltmètre comprend essentiellement un galvanomètre G à cadre mobile de 

résistance interne 𝑟𝑔 aux bornes duquel est disposé en parallèle une résistance 

égale à la résistance critique extérieure 𝑅𝑐. 

En série avec cet ensemble, est placée une résistance généralement élevée 
(Figure III.10), que l'on peut mettre en service, en totalité ou en partie. On 
désigne par R la résistance de la portion utilisée (Figure III.11). 

 

                                 
Figure III.10: Structure électrique simplifiée                       Figure III.11: Schéma équivalent du 

       d’un voltmètre multi-calibres                                       voltmètre en fonctionnnement. 

 

La résistance interne 𝑅𝑣 du voltmètre est la résistance équivalente : 

                             𝑅𝑣 = 𝑅 +
𝑟𝑔𝑅𝑐

𝑟𝑔+𝑅𝑐
≅ 𝑅      (𝑅 ≫ à 𝑟𝑔 𝑒𝑡 à 𝑅𝑐)                                            (III. 34) 

Si, on veut mesurer une tension V par le voltmètre, cette tension engendre 
le passage d'un courant I dans le circuit du voltmètre et un courant /0 dans celui 
du galvanomètre G : 

                       𝐼 =
𝑣

𝑅𝑣
 𝑒𝑡 𝐼0 = 𝐼

𝑅𝑐

𝑟𝑔+𝑅𝑐
= [

1

𝑅𝑣

𝑅𝑐

𝑟𝑔+𝑅𝑐
] ∙ 𝑉     𝑎𝑣𝑒𝑐 𝑅𝑣 ≅ 𝑅                    (III. 35) 

 

III.3.2. Equation de mouvement du cadre du voltmètre: 

En gardant les mêmes paramètres déjà choisi pour le cas de 
l'ampèremètre, l’équation de mouvement du cadre appliquée au voltmètre 
devient : 
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      𝐽
𝑑2𝜃

𝑑𝑡2 + (ℎ +
∅0

2

(𝑟𝑔+𝑟)
)

𝑑𝜃

𝑑𝑡
+ 𝐶𝜃 = ∅0𝐼0 = ∅0 [

𝑅𝑐

𝑅𝑣(𝑟𝑔+𝑅𝑐)
] ∙ 𝑉                                       (III. 36) 

 

III.3.3. Étude de la sensibilité   : 

À l’équilibre, la position 
e atteinte par cadre du voltmètre sera donnée par : 
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et en posant :
 

/o o C    et /o V   on en déduit : 
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On constate que, par le choix de R, on peut obtenir plusieurs sensibilités de 
l’appareil. 

Pratiquement, on n’utilise que quelques valeurs de R (4 à 6) ; à chacune d’elle, 
correspond une sensibilité   et une tension 

oV  qui fait dévier l’aiguille sur l’étendue 

totale m  de la graduation. 

                                   (III.39)m

oV


   

oV  est appelé le calibre du voltmètre correspondant à la sensibilité  , qui est donc, 

inversement proportionnelle au calibre. 

 

III.3.4. Mesure : 

En électricité, les grandeurs à mesurer sont : soit des grandeurs continues, soit 
variables avec le temps (en général périodiques, mais peuvent ne pas être 
sinusoïdales). De façon générale, on définit les valeurs moyennes 

mG  et efficace 
effG  

d’une grandeur périodique G(t) de période T par : 

 

*

0 0

1 1
(t)dt (t) (t)dt (III.40)

T T

m effG G et G G G
T T

    
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Le principe des appareils magnétoélectriques montre que le couple moteur est 
proportionnel à la grandeur à mesurer. La détermination de l’espacement entre 
divisions d’une échelle donnée, dépend justement de ce coefficient de proportionnalité. 
Comme certains de ces appareils mesurent une valeur moyenne, pour d’autres, c’est 
plutôt c’est la valeur efficace qui est mesurée. Comme pour les appareils thermiques, 
cette valeur mesurée devient effectivement la valeur efficace, car c’est son carré qui 
intervient dans l’expression du couple moteur, ou même pour d’autre, elle peut être la 
valeur maximale, comme c’est le cas pour les voltmètres de crête à diode. 

Cependant, ce qu’il faut retenir, c’est que : quelle que soit la grandeur qui intervient 
dans le principe de fonctionnement d’un appareil électrique, l’étalonnage est réalisé en 
courant alternatif sinusoïdal et les graduations indiquent le plus souvent des valeurs 
efficaces. 

Pour le cas des appareils magnétoélectriques, ou le couple moteur est proportionnel 
à G(t), un calcul simple montre que la grandeur mesurée est Gm, valeur moyenne de 
G(t), qui correspond au terme constant du développement en série de Fourier. Le 
problème est pour beaucoup de signaux utilisés en électricité, Gm = 0 (grandeurs 
alternative). Donc, ces appareils ne peuvent pas toujours donner une indication 
utilisable pour la connaissance de G(t) quand Gm = 0. 

Pour éviter ce problème, on doit associer au circuit de mesure un ou plusieurs 
redresseurs pour que l’appareil puisse donner une indication sur la valeur moyenne 
mesurée de la grandeur redressée à une alternance (Figure III.12) ou à deux 
alternances (Figure III.13). Dans ce cas, l’échelle de mesure sera différente de celle 
utilisée en courant continu. 

 

III.3.4.1. Exemple d’une grandeur sinusoïdale redressée à une alternance : 
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Fig. III.12. Cas du redressement 

mono-alternance 
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Par conséquent, comme l’appareil mesure 
G

m
MG


 , alors ce qu’on lit réellement 

n’est autre que la valeur efficace, soit : 

                                                               
2

maxG
GG efficacelue   

 

III.3.4.2. Exemple d’une grandeur sinusoïdale redressée à double alternance : 

 

 

Dans ce cas, l’appareil mesure 


max2G
Gmesurée  , et comme on lit la valeur efficace, 

soit : 
2

maxG
Gefficace  , alors, on en déduit donc : 

mlue GG .
22


  

Par conséquent, on voit que le coefficient de proportionnalité entre la valeur lue et 

la valeur mesurée par l’appareil est le même quelle que soit la forme de  tG . 

 

III.3.4.2. Autres types d’exemple : 

Dans le (Tabeau III.1) suivant, sont présentés d’autres cas de mesures utilisant un 
appareil magnétoélectrique en régime variable pour divers types de signaux. 

 

Remarque : 

Si, le type d’appareil se trouve différent de celui étudié (autres que 
magnétoélectrique), comme par exemple les appareils thermiques ou de crête à diode, 
il est facile de refaire le même type de raisonnement pour retrouver les relations qui 
relient les grandeurs mesurées à celles indiquées par la lecture. 
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Figure III.13 : Cas du redressement 

à double alternance 
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Signal à mesurer 
Sans 

redressement 
Redressement 

Mono-alternance 

Redressement 
Double 

alternance 

 

mlmesuréelue GGG   
2

. m
lue

G
G


  

22

. m
lue

G
G


  

 

0lueG  


M
mesurée

G
G 

2

M
lue

G
G   


M

mesurée

G
G

2


2

M
lue

G
G   

 


M

lue

G
G   


M

mesurée

G
G 

2

M
lue

G
G   


M

mesurée

G
G 

22

M
lue

G
G   

 


M

lue

G
G

2
  

M
mesurée

G
G

2


Mlue GG .2  


M

mesurée

G
G

2


2

M
lue

G
G   

 

0lueG  
2

M
mesurée

G
G 

22

. M
lue

G
G


  

Mmesurée GG 

22

. M
lue

G
G


  

 

0lueG  
4

M
mesurée

G
G 

24

. M
lue

G
G


  

2

M
mesurée

G
G 

24

. M
lue

G
G


  

Quel que soit la 
forme du signal 

______ mlue GG .
2


  

mlue GG .
22


  

 
Tableau III.1 : Détermination des relations reliant les grandeurs que les appareils 

fournissent lueG , et celles que le principe physique établisse à partir des lois physique. 

On remarque qu’il y a toujours un rapport constant qu’on en prend généralement en 
compte lorsque on trace les divisions d’une échelle de mesure sur le cadran de l’appareil. 
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III.4. L'OHMMÈTRE À CADRE MOBILE : 

L'ohmmètre à cadre mobile est utilisé pour la mesure directe des résistances. 
Généralement, la gamme mesurable est comprise entre quelques ohms et une dizaine 
de méga-ohms. Dans la plupart des cas, les constructeurs intègrent la fabrication de 
tout les appareils qui dérivent du galvanomètre (ampèremètre, voltmètre, ohmmètre) 
en un seul bâti qu'on appelle "multimètre". 

 

IIl.4.1. Structure électrique : 

En réalité, un ohmmètre est construit à partir d'un milliampèremètre dont la 
graduation du cadran est faite en résistance. 

Donc, il doit nécessairement comprendre un galvanomètre G de résistance interne 
rg et d’une résistance prise égale à la résistance critique extérieure Rc, branchée en 
parallèle sur rg. 

Cette résistance Rc est fractionnée en plusieurs parties appelée résistance shunt Rs 
et qui permet de l'utiliser en plusieurs calibres (Figure lll.13-a et III.13-b) ci-dessous. 
Chaque résistance shunt Rs est munie d'une prise extérieure Ai définissant le calibre. 

Avec ce cas de figure, la résistance parallèle à r devient celle qui se trouve entre la 
borne commune Ao et la prise calibre Ai; 

 

 

Le circuit est alimenté par une pile de f.e.m E0 dont on suppose que la valeur est 
relativement constante. En série avec l'alimentation et le milliampèremètre, on place 
une résistance additionnelle de forte valeur R et la résistance à mesurer Rx. 

 

 
Figure III.13-a : Structure électrique 
simplifiée d'un ohmmètre à calibres 

multiples. 

 
Figure III.13-b : Schéma équivalent 

de l’appareil en fonctionnement. 
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III.4.2. Mesure : 

Avant de faire les mesures, on doit tout d'abord procéder à l'étalonnage de l'échelle 
de l'appareil en effectuant les deux tests suivants : 

i) On court-circuite les deux bornes Aa et Ai. (Résistance Rx à mesurer nulle), la 
déviation de l'aiguille doit couvrir la pleine échelle du cadran. Donc, le zéro de l'échelle 
devient, contrairement aux appareils déjà vus précédemment, à l'extrémité du côté 
droit du cadran. 

ii) On laisse les deux bornes Aa et Ai à l'état de circuit ouvert (résistance Rx à 
mesurer infinie), le courant qui passe dans le cadre de l'appareil devient nul et l'aiguille 
doit se positionner à l'extrémité gauche du cadran marquée par l'indication (∞). 
Naturellement, les valeurs mesurées des résistances doivent être comprises dans 
l'intervalle [0 ; ∞]. 

Dans la pratique, le problème majeur des ohmmètres reste l'usure de la pile 
d'alimentation où la f.e.m E, peut décroître d'une valeur initiale E0 à une valeur minimale 
Emin (= 50 % de E0). Cette diminution de la tension d'alimentation rend la graduation de 
l'appareil dépendante de E. 

Pour éviter ce problème, au moins dans un certain intervalle limite [Emin ; E0], on doit 
shunter le milliampèremètre par une résistance variable Rs. Nous devons s'assurer par 
la suite que l'introduction de cette résistance shunt Rs ne doit pas produire une variation 
importante de la résistance intérieure Ri: du milliampèremètre devant la résistance 
additionnelle R. Et comme, on est toujours obligé avant chaque mesure, de régler Rs 
de telle sorte que, la résistance Rx étant court-circuitée, l'aiguille atteigne la déviation 
pleine échelle qu'on va noter N (0 Ω correspond donc à la déviation N). Nous pouvons 
alors calculer le domaine de variation Rs qui permet ce réglage. 

Donc, tant que la f.e.m E est comprise dans l'intervalle [Emin ; E0], on aura un courant 
de court-circuit : 

sg

sg
cc

Rr

Rr
R

E
I




 0
                                     (III.40-a)                                                

Le courant dans le cadre de l’appareil sera alors : 
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
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
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           (III.40-a)                                  
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La résistance intérieure 𝑅𝑠 sera alors égale : 

 

                                            𝑅𝑠 =
𝑅𝑟𝑔𝐼0(𝑁)

𝐸0−(𝑟𝑔+𝑅𝑠)𝐼0(𝑁)
                                              (III. 40 − c) 

 

Elle sera comprise dans l’intervalle : 

                                           𝑅𝑠 ∈ [
𝑅𝑟𝑔𝐼0(𝑁)

𝐸0
, ∞] ≅ [𝑟𝑔;∞]                                  (III. 40 − d) 

 

Donc, 𝑅 𝑠 peut alors varier de 𝑟𝑔 à 𝑅∞  , mais, placée en parallèle avec 𝑟𝑔  elle permet 

d’avoir une résistance intérieure 𝑅𝑖 du milliampèremètre qui varie de 0,5 𝑟𝑔 à 𝑟𝑔 ; c'est-

à-dire d’environ 50%. On choisit alors, pour la résistance additionnelle 𝑅  une valeur 
très forte de telle sorte que la variation de quelques dizaines d’ohms de la résistance 
intérieure du milliampèremètre ne représente que l’ordre de 1% ou 2% de la valeur 

de  𝑅 . Cet ordre de précisions est généralement plus qu’acceptable pour un ohmmètre 
d’utilisations courantes. 

Le courant dans le cadre de l’appareil, une fois ces considérations pris en compte 
sera donné par la relation approchée suivant : 

 

                                          𝐼0(𝑁) =
𝐸0𝑅𝑠

(𝑅+𝑟𝑔)(𝑅𝑠+𝑟𝑔)
                                               (III. 40 − e) 

Quand on place la résistance 𝑅𝑥 dans le circuit de mesure, on aura dans le cadre 
un courant qui provoque une déviation de 𝑛 division de l’aiguille.𝐼(𝑛), sera alors donné 
par : 

                                         𝐼(𝑛) =
𝐸0

𝑅𝑥+(𝑟𝑔+𝑅)

𝑅𝑠

(𝑟𝑔+𝑅𝑠)
                                               (III. 40 − f) 

 

On sait aussi que : 

                         𝑅𝑥 = (𝑟𝑔 + 𝑅) [1 −
𝐼(𝑛)

𝐼0(𝑁)
] = (𝑟𝑔 + 𝑅)[1 −

𝑛

𝑁
] ≅ 𝑅[1 −

𝑛

𝑁
]     (III. 40 − g) 

On voit que, pour et pour 𝑛 = 𝑁 , 𝑅𝑥 = 0 et pour 𝑛 = 0 , 𝑅𝑥 = 𝑅 + 𝑟𝑔 ≈ 𝑅  ce qui limite 

le domaine des résistances 𝑅𝑥 que l’appareil peut mesurer à celle comprises dans 
l’intervalle [0 ; R]. Il faut remarquer que, dans la relation (III. 40 − g) le sens croissant 

des valeurs de 𝑛  est pris de gauche vers la droit, alors que l’échelle en Ω  est graduée 
de droite à gauche. 
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Remarques : 

1°)- Dans la pratique, cet appareil possède une pile (source de tension U continue) 
et un ampèremètre, dont l'échelle est graduée en ohm (Ω). Sa manipulation demande 
une attention particulière. Car, le fait d’être constitué d'un générateur de tension 
électrique U (pile), indépendant du réseau électrique, il devient nécessaire de 
déconnecter, en fin de mesure, cette source de tension du circuit aux moyens des 
fusibles ou des disjoncteurs. 

2°)- Il faut toujours avoir dans l’esprit le fait d’avoir un conflit entre la tension 
électrique U d'une pile qui est de nature continue et la tension électrique u(t) du réseau 
qui est de nature alternative sinusoïdale. 

3°)- La précision de l’appareil dépend intrinsèquement de la précision des 
composants internes (E0, rg et R) qui est généralement comprise entre 5% et 10%. 
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Chapitre IV 

IV.1. LE WATTMÈTRE ELECTRODYNAMIQUE EN REGIME CONTINU : 

 

IV.1.1. Structure interne : 

On utilise le wattmètre pour mesurer la puissance électrique définie par le produit 
d’une tension 𝑈  par une intensité de courant 𝐼  (P = U x I). Pour réaliser cet objectif, 
on fait intervenir le principe fondé sur les actions exercées, entre elles, par deux 

bobines parcourus par des courants, l’un fixe qui représente le circuit courant (𝐶𝑖) 
(Figure IV.1) et l’autre mobile qui représente le circuit tension (𝐶𝑢) (Figure IV.2). 

                                 

Figure IV.1 : Circuit courant (𝐶𝑖) du wattmètre                       Figure IV.2 : Circuit tension (𝐶𝑢) 
wattmètre représenté par la grande bobine                               identique à celui d’un ampèremètre. 

 

IV.1.1.1. Le circuit courant (𝑪𝒊) : 

Ce circuit est constitué par une bobine fixe (𝐶𝑖) comportant 𝑁 spirs d’un fil de 
diamètre gros pour supporter les forts courant (𝑛𝐼 ≅ 100 à 300). Le champ magnétique 
au centre est donné par : 

 

                            𝐵⃗ = 𝜇0
𝑛

𝑁
𝐼. 𝑥 = 𝛼𝐼. 𝑥               [en Tesla T]                                               (IV. 1) 

 

où : 𝛼 = 𝜇0
𝑛

𝐿′
,    avec (𝜇0 = 4𝜋 10−7)   𝑒𝑡 𝐿  est la longueur totale de la bobine courant 

(𝐶𝑖). 
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IV.1.1.2. Le circuit tension (Cᵤ) : 

Ce circuit comprend une bobine de dimensions réduites par rapport à la bobine 
courant et est placée au centre-ci .Elle comporte un nombre important de spires de fil 

fin, avec lequel on associe en série, une résistance élevée 𝑅. Le mouvement de 
rotation se fait autour d’une axe (∆) nommale à x, muni de deux pivots, d’une ressort 
spiral créant le couple de rappel et d’une aiguille indicatrice associée à un cadran 
gradué. 

 

Le courant 𝐼′ qui traverse la bobine tension a l’expression suivante : 

 

                                              𝐼′ =
𝑈

𝑅+𝑟𝑔
≅

𝑈

𝑅
   𝑜𝑢 𝑅 ≫ 𝑟𝑔                                                   (IV. 2) 

 

La présence de ce courant 𝐼′ en même temps que 𝐵⃗  fait apparaitre sur cette dernière 

un couple moteur 𝛤 𝑚 donné par : 

 

                          𝛤𝑚 = 𝑛𝐼′. 𝑎𝑏 . 𝐵. sin 𝜃 = 𝑛𝐼′. 𝑠. 𝐵. sin 𝜃                                                      (IV. 3) 

 

Si on pose = 𝑛𝐼′. 𝑠, cette constante qu’on va appeler par la suite moment 
magnétique sera l’une des caractéristiques qui schématise le cadre de l’appareil. 

 

Le moment magnétique se mesure en [𝑚2. 𝐴]. On en fait un vecteur (𝑚⃗⃗  ) porté par 
la normale au plan (Figure IV.2) et sortant par la face nord. On peut alors écrire : 

 

                      𝑚⃗⃗ = 𝑛𝐼′𝑘.⇒ 𝑚⃗⃗  = 𝑛𝐼′. 𝑎𝑏. 𝑘⃗ = (
𝑛𝑎𝑏

𝑅
) . 𝑈. 𝑘⃗                                                  (IV. 4) 

d’où: 𝛼′ = (
𝑛𝑎𝑏

𝑅
), qui reprèsente une constant ne de pendant que des paramètres 

physiques de la bobine tension. 

 

Le couple moteur qui lui acquiert un mouvement de rotation autour de (∆) est alors 
donnè par : 

                                     𝛤𝑚 = 𝑚.𝐵. sin 𝜃  ⇒  𝛤 𝑚 = 𝑚⃗⃗ ⨂𝐵⃗                                                 (IV. 5) 
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Figure IV.3 : Représentation du moment        Figure IV.4 : Décomposition du vecteur 𝐵⃗  

 magnétique 𝑚⃗⃗  normal au plan du cadre.            en composante active et inactive. 

 

IV.1.2. Fonctionnement du wattmètre : 

La forme de l’équation du mouvement de la bobine tension (𝐶𝑢) , autour de l’axe (∆) 
est comparable à celle du cadre etudie precedement : 

 

                      𝐽
𝑑2𝜃

𝑑𝑡2 + (
∅0

2

(𝑟𝑔+𝑟)
)

𝑑𝜃

𝑑𝑡
+ 𝐶𝜃 = 𝐽

𝑑2𝜃

𝑑𝑡2 + 𝐴
𝑑𝜃

𝑑𝑡
+ 𝐶𝜃 = 𝛤𝑚                                  (IV. 6) 

où 𝛤𝑚 est le couple moteur. 

 

Pour le calculer à partir de la relation (IV. 5) : 

 

                    𝛤𝑚 = 𝑚.𝐵. sin 𝜃           ⇒                    𝛤𝑚 = 𝑚⃗⃗ ⨂𝐵⃗                                               (IV. 5) 

 

On doit tenir compte de la nature du champ magnétique 𝐵⃗  qui n’est uniforme en tout 
point à l’intérieur de la bobine courant (𝐶𝑢) (Figure IV.2). En position d’équilibre 𝜃𝑒, les 

couples antagonistes présents conditionnent l’établissement d’équilibre ou 𝛤 𝑚 devient 
égale à : 
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                                        Γ  = 𝑚⃗⃗ ⊕ 𝐵⃗ ∤ (𝐵𝑡
⃗⃗⃗⃗ + 𝐵𝑛

⃗⃗ ⃗⃗ )  = 𝑚⃗⃗  ⊕ 𝐵𝑡
⃗⃗⃗⃗  .cos 𝜃𝑒                            (IV. 7) 

Donc, on aura selon l’axe (∆), l’expression du couple moteur 𝛤𝑚⃗⃗ ⃗⃗   : 

                                     𝑚
⃗⃗ ⃗⃗  ⃗  = 𝑚⃗⃗ ⊕ 𝐵⃗ 𝑡 cos 𝜃𝑒 ⇒ Γm =  αα′UI cos θe                             (IV. 8) 

 

Ce couple devient égal à : Γ𝑟 = 𝐶𝜃𝑒, on aura alors : 𝐶𝜃𝑒 =  𝛼𝛼′𝑈𝐼 cos 𝜃𝑒 . de plus, 𝜃𝑒, 

reste faible (𝜃𝑒 ≤ 10°) , alors : cos 𝜃𝑒 ≅ 1, et cette dernière relation : 

 

                               𝛼𝛼′𝑈𝐼 = 𝐶𝜃𝑒 ⇒ 𝑈𝐼 =  
𝐶

𝛼𝛼′
𝜃𝑒  d’où 𝑃 = 𝛽𝜃𝑒                                      (IV. 9) 

où : 𝛽 =
𝐶

𝛼𝛼′ est une constante. 

La puissance devient proportionnelle à déviation 𝜃𝑒. 

 

IV.1.3. Choix du circuit de montage du wattmètre : 

Pour mesurer, avec un wattmètre, la puissance consommée dans un récepteur 

donné, on doit disposer la bobine courant (𝐶𝑖) en série avec  ce récepteur et la bobine 
tension (𝐶𝑢) en parallèle. 

Mais, selon les places affectées aux des bobines par rapport aux bornes du 
récepteur, la mesure de puissance ne sera jamais exacte. Le problème devient 
comparable à celui rencontré dans la mesure des résistances quand on évoqué l’utilité 
des deux montages amont et aval au premier chapitre (voir Figure I.1). 

 

Figure IV.5-a : Circuit synoptique du 
wattmètre avec ses deux montages 

possibles amont (point 𝐴𝑚) et aval 
(point𝐴𝑣). 

Figure IV.5-b : Circuit électrique du 
wattmètre en montage amont (point 

𝐴𝑚) et aval (point𝐴𝑣). 
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IV.1.3.1. Montage aval (point 𝑨𝒗) : 

La puissance consommée par 𝑅0 est 𝑃0 = U(𝐼 - 𝐼1) = U𝐼 - U𝐼1, où (𝑈, 𝐼) sont la tension 
et le courant mesurées respectivement par le circuit tension et le circuit courant de 

l’appareil et 𝐼1 le courant qui traverse le circuit tension du wattmètre. Donc la puissance 

mesurée est 𝑃𝑚 = 𝑈𝐼 ; d’autre part, 𝐼1 = 𝑈 𝑅⁄  

D’où  

                                                   ∆𝑃 = 𝑃𝜀 = 𝑃0 − 𝑃𝑚 = 𝑈
2

𝑅⁄                                      (IV. 10) 

On remarque que : ∆𝑃 est d’autant plus faible que R est grand (choix du calibre) et 

𝑈 est faible. 

 

IV.1.3.2. Montage amont (point  𝑨𝒎) : 

La puissance mesurée dans ce cas est : 𝑃𝑚 = 𝑈𝐼 + 𝑟𝐼2 , où : (𝑈, 𝐼) sont la tension et 
le courant mesurées respectivement par le circuit tension et le circuit courant de 

l’appareil er 𝑟 la résistance équivalente du circuit courant. La puissance consommée 
par 𝑅0 est : 

                                                  ∆𝑃′ = ∆𝑃𝜀
′ = 𝑃𝑚 − 𝑃0 = 𝑟𝐼2                                          (IV. 11) 

Donc, on remarque que, l’écart ∆𝑃′ peut être réduit par le choix d’une bobine ( 𝐶𝑖 ) 
de faible résistance interne, malgré que cette option entrainerait une diminution de la 
sensibilité. 

 

IV.2. Le wattmètre en régime sinusoïdal : 

IV.2.1. Puissance instantanée, puissance moyenne et puissance complexe :  

IV.2.1.1. Puissance instantanée : 

À un instant 𝑡 donnée, la définition puissance instantanée est donnée par la relation : 
𝑃(𝑡) = 𝑢(𝑡). 𝑖(𝑡). Dans le cas d’un régime sinusoïdal on a : 𝑖(𝑡) = 𝐼0 cos(𝜔𝑡 + 𝜑𝐼) ; 

                                                                                         𝑢(𝑡) =  𝑈0 cos(𝜔𝑡 + 𝜑𝑢) 

Donc : 

𝑃(𝑡) = 𝑈0𝐼0 cos(𝜔𝑡 + 𝜑𝑖).cos(𝜔𝑡 + 𝜑𝑢) = 
𝑈0𝐼0

2
[cos(2𝜔𝑡 + 𝜑𝑖 + 𝜑𝑢 + cos𝜑]           (IV.12) 

où : 𝜑 = 𝜑𝑢 − 𝜑𝑖 

𝑃(𝑡) est une fonction sinusoïdal de fréquence 2𝑓. 
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IV.2.1.2. Puissance moyenne : 

Par définition, la puissance moyenne Pm est donnée par : 

 

                                     Pm =  
1

𝑇
 ∫ 𝑃(𝑡)𝑑𝑡 =  

𝑈0𝐼0

2

𝑇

0
𝑐𝑜𝑠𝜑 = 𝑈𝐼𝑐𝑜𝑠𝜑                             (IV.13) 

où : U0 = √2.U; I0 = √2.I   et   φ = φu – φi et les grandeurs (U, I) représentent des 
valeurs efficaces. 

 

Cos φ : est appelé le facteur de puissance ; 

U.I : représente la puissance apparente exprimée en [V,I] et,  

U.I cos φ : représente la puissance moyenne, communément appelée puissance 
active et exprimée en watts [W] 

 

IV.2.1.3. Puissance complexe : 

Si Ū et Ī deviennent des grandeurs complexes et Ī* le conjugué de Ī, on appelle 
puissance complexe P՟, le nombre complexe donné par : 

                                                              P՟ =
1

2
 ŪĪ ∗                                                         (IV.14) 

En connaissant que : 

 

        Ū =  √2 U𝑒𝑗𝜑(𝑢) ; Ī =  √2𝐼𝑒𝑗𝜑(𝑖)   Ī* = √2𝐼𝑒−𝑗𝜑      et      φ = φu – φi         (IV.14-a) 

 

Et comme la puissance complexe est donnée par : 

 

                                   P՟ = UI cos φ + jUI sin φ                                             (IV.14-b) 

où : Pm = Ʀ (P՟) = UI cos φ est la puissance moyenne qu’on mesure avec un 
wattmètre [W]. 

Et : Pr = ɝ(P՟) = UI sin φ représente la puissance réactive qu’on mesure avec un 
varmètre [VAR]. 
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IV.2.2. Principe de fonctionnement : 

En régime sinusoïdale, le couple moteur Гm  appliqué à la bobine (Cu) est de la 
forme :  

                                                             mtitut .'                                                   (IV.16) 

 

Tant que (θ e ≤ 10°), l’équation de mouvement de cette bobine est : 

 

                                         mC
dt

d
A

dt

d
J  


2

2

                                                        (IV.17-a) 

                                  cos2cos
2

'.' 00  uim t
C

IU
titu                          (IV.17-b) 

 

 

L’amplitude correspondante à cette seconde solution représente une courbe de la 
forme donnée ci-dessus (voir Figure IV.6) qui est déjà vue et étudiée au chapitre II. Car 
la bobine tension (Cu) à elle seul, constitue un circuit RLC résonant excité par une 
oscillation sinusoïdale. Le cadre est généralement construit, de telle façon que, 
l’amplitude des oscillations forcées de la bobine soit toujours négligeable (elle est 
d’ailleurs invisible). 

Pour des mesures courantes de puissance, la fréquence de signale domestique est 
de 50 Hz. Et comme la période propre T0 de la bobine est choisi égale à une seconde 
(T0 = 1 s), donc 2ω est cent fois plus grande que ω0, C(2ω) devient alors très petite 
devant l’unité. 

 

 

 

La solution de cette équation avec 
seconde membre comprend deux 
termes : 

1°) mm PP
CC

IU



 

'
cos

2
' 00

1  

2°)      


  tCIU
C

t 2cos2..
'

2  

 
Figure IV 6 : Variation de l’amplitude 
C(2ω) en fonction de la pulsation ω. 



78                                                                                                                    Chapitre IV 
 

 

La position prise par la bobine est celle définie par : θl = β.Pm  

Elle, identique à celle qu’imposerait un régime permanent caractérisé par un terme 
indépendant du temps t et proportionnel à Pm. C’est pour cette raison que le wattmètre 
indifféremment en régime sinusoïdale qu’en régime permanent. 

 

IV.3. Mesure de puissance : 

IV.3.1. Mesure direct : 

Avec un wattmètre, la précision de mesure de puissance dépend du montage amont 
où aval utilisé du circuit courant par rapport au circuit tension. Pour éviter ce problème, 
on construit des wattmètres dits compensés (Figure IV.7), où l’erreur de construction 
est éliminée automatiquement. 

 

 

IV.3.2. Mesure indirect : 

 

IV.3.2.1. Méthode des trois ampèremètres : 

Cette méthode est schématisée par le montage suivant où R0 est connue. Donc, 
d’après le circuit de la (Figure IV.8) on peut écrire :  

 

Une bobine auxiliaire fixe est 
placée en série avec la bobine 
tension, son enroulement suit 
exactement celui de la bobine 
courant, son action magnétique 
s’opposant à celle de cette derrière 
(voir Figure IV.7 ci-contre). 

Le circuit tension est soumis à la 
tension U , la bobine courant est 

parcouru par : va iii   et la bobine 

auxiliaire par le courant vi , le 

voltmètre mesure donc la différence : 

  vv iUiiU ..   qui sera égale à : iU. , 

c’est-à-dire, exactement la valeur de 
la puissance recherchée. 

 

 
Figure IV.7 : Schéma d’un wattmètre 

compensée où l’erreur de construction 
est corrigée sans aucun réglage 

supplémentaire. 
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La puissance consommée dans la résistance de charge R, sera calculée par 
l’intégration sur une période : 

D’où :                               2

3

2

2

2

1
0

320
30 2

...
1

III
R

iiRdtiu
T

P
T

m                 (IV.18-a) 

Ce qui donne :                                      2

3

2

2

2

1
0

2
III

R
Pm                          (IV.18-b) 

Où : (I1, I2 et I3) sont les valeurs efficaces mesurées par les trois ampèremètres. 

 

IV.3.2.2. Méthode des trois voltmètres : 

De manière analogue à celle de la méthode exposée au paragraphe ci-dessus (§-
IV.3.2.2), on obtient à partir du circuit de la Figure IV.9) les relations suivantes : 

 

 

La puissance consommée dans la résistance de charge R, sera calculée par 
l’intégration sur une période : 

D’où :                 2

3

2

2

2

1

0

32

0
0

3

2
..

1
.

1
UUU

R
uu

R
dtiu

T
P

T

m                        (IV.19-a). 

 232

2

1321 iiiiii                 

Donc :  2

3

2

2

2

121
2

1
. iiiii   

Alors : 

 2

3

2

2

2

1
0

323
2

... iii
R

iiRiuP   

 
Figure IV.8 : Méthode des trois 

ampèremètres. 

 232

2

1321 uuuuuu                 

Donc :  2

3

2

2

2

121
2

1
uuuuu   

Alors : 

 2

3

2

2

2

1

0

32

0

3

2
..

1
. uuu

R
uu

R
iuP   

 
Figure IV.9 : Méthode des trois 

voltmètres. 
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Ce qui donne : 

                                                  2

3

2

2

2

1

02

1
uUU

R
Pm                                   (IV.19-b) 

Où : (U1, U2 et U3) sont les valeurs efficaces mesurées par les trois voltmètres. 

 

IV.3.2.3. Méthode des deux wattmètres : 

Cette méthode concerne la mesure de puissance d’installation (réceptrice ou 
génératrice), insérée par un réseau par trois sommets A, B et C. La puissance 
absorbée par cette installation est la somme de celle absorbée dans les trois branches. 

 

                                                  
1

3

1

.. ABBAii iuiuP                                                  (IV.20) 

 

Or, si M est un point quelconque : 

                                            MBMABA uuu    et  BAAB ii                                             (IV.21) 

D’où : 

               CBACABMBCBACABMABAMBABMA iiiuiiiuiuiuP  ..              (IV.22) 

Désignons par iA le courant total aboutissant de l’extérieur au sommet A, P est alors 
la somme des trois sommets. 

                                                          AMA iuP .                                                           (IV.23) 

 

Chacun des trois termes peut se mesurer au moyen d’un wattmètre. En principe, il 
faudrait donc utiliser trois wattmètres. Mais, le point M étant arbitraire, on peut le choisir 
en un des sommets de l’installation ; le terme correspondant à ce sommet est alors nul 

( 0MMu ), Il suffit donc, comme son nom l’indique, utiliser deux wattmètres uniquement 

pour effectuer la mesure complète de la puissance. 

Plus précisément, cette méthode est utilisée en triphasé (quand le système est 
équilibré). Dans ce cas, le réseau triphasé ne sera constitué que par les fils des trois 
phases (il n’y a pas de conducteur neutre). On peut alors choisir arbitrairement l’une 
des phases comme référence et on réalise le montage de la (Figure IV.10-c). 
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Ce montage peut être remplacé par un système équivalent constitué d’un seul 
wattmètre et de commutateurs permettant de connecter le circuit courant 
successivement sur les fils des deux par rapport à la phase prise comme référence. 

Enfin, on peut à la place du montage précédent, utiliser directement un wattmètre 
double où la structure interne et composée de deux wattmètres classiques. 

D’une manière générale, on peut étendre ce raisonnement à n branches où 
seulement n-1 wattmètres suffisent pour mesurer la puissance consommée. 

 

 

 

 

 
Figure IV.10-c : Méthode des deux wattmètres 

appliquée à un réseau triphasé 
équilibré. 

 

 
Figure IV.10-a : Principe de la méthode où 
il y a un nombre de branches supérieur à 

trois. 

 
Figure IV.10-b : Circuit électrique 

équivalent, étendu à n-1, si l’installation 
contient n branches. 
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Chapitre V 

V.1. LE COMPTEUR D’ÉNERGIE ÉLECTRIQUE : 

 

Dans ces appareils, l’équipage mobile représente un disque en aluminium. Ce 
disque est mobile dans l’entrefer de circuits ferromagnétiques qui sont le siège de flux 
alternatifs de même fréquence, et correctement déphasé l’un par rapport à l’autre. Un 
aimant permanent (N et S) assure un amortissement par courants de Foucault. 

Le couple moteur exercé sur l’équipage est obtenu des actions des champs 
magnétiques tournant créés par 1 et 2 sur le disque (Figure V.1). 

Ces champs (Figure V.2) induisent des courants dans l’équipage mobile. À leur tour, 
ces courants subissent des forces induites qui tendent à s’opposer au phénomène qui 
lui a donné naissance ; ces forces tendent donc à diminuer la vitesse relative du champ 
tournant par rapport à l’équipage, c’est-à-dire à mettre ce dernier en mouvement dans 
le sens de rotation du champ tournant. 

 

 

Les courants i1 et i2 déphasé l’un de l’autre d’un angle φ dans les circuits 1 et 2 sont 
donnés par les relations suivantes : 

       
dt

d

R
tIi

dt

d

R
tIi 2

22
1

11

1
cos2

1
cos2





         et                         (V.1) 

 
Figure V.1 : Compteur d’énergie à 

induction monophasé. 

 

Figure V.1 : Courants induits agissant 
sur le disque. 
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Où R est une résistance équivalente des circuits dans lesquels circulent les courants 
induits. 

Les éléments de forces qui apparaissent sont alors exprimés par : 

 

                         
dt

dB
BkdliBdf

dt

dB
BkdliBdf 1

2122
2

1211 ......         et               (V.2) 

 

La résultante devient égale à : 

                                                     









dt

dB
B

dt

dB
Bkdf 2

1
1

2.                                          (V.3) 

 

Ce qui permet d’exprimer le couple moteur m


 par : 

 

                  sin2.. 21
2

1
1

2
2

1
1

2 IIk
dt

di
i

dt

di
ik

dt

dB
B

dt

dB
Bkm


















                    (V.4) 

 

On voit ainsi, que le couple moteur moyen m


 est proportionnel à la puissance P. 

 

                                                         Pkm .                                                                      (V.5) 

 

Le couple d’amortissement est proportionnel à la vitesse angulaire 
dt

d
, donc : 

                                                       
dt

d
A


.0
                                                                      (V.6) 

 

S’il n’y a pas de couple de rappel, à l’équilibre on peut écrire : 
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                               dtP
A

k
dk

dt

d
APk .....











 


                                               (V.7) 

 

Et de là, pour l’angle de rotation   de l’équipage mobile pendant un intervalle de 

temps ( 21 tt  ; ) : 

 

                               tP
A

k
dtP

A

k t

t






  ..

2

1

                                                        (V.8) 

 

Cette relation montre que   est proportionnelle à l’énergie active consommée par 

l’installation, et en est donc une mesure. La constante de proportionnalité   exprimée 

en  trs/kWh  est appelée la constante du compteur. 
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Chapitre VI 

VI.1. PRINCIPE DU LOGOMÈTRE : 

Le logomètre, dans certains cas, peut être utilisé comme un instrument d’indication, 
comme par exemple, le niveau de la jauge du réservoir d’essence d’un véhicule ou la 
température-moteur d’une voiture. 

Comme ces appareils mesurent le rapport entre deux grandeurs électriques (deux 
courants par exemple), alors il faut deux éléments moteurs, généralement solidaires 
(c’est-à-dire possédant le même axe de rotation), mais disposés de façon 
perpendiculaire l’un par rapport à l’autre. 

Donc, se sont des dispositifs  formés de deux enroulements en forme de cadre 
disposés à 90 degrés, à l'intérieur desquels on place un mécanisme mobile, où sous 
les actions des couples électromagnétiques fait tourner une aiguille d'indication. 

Et comme aussi, certaines grandeurs électriques apparaissent comme le résultat 
d’un quotient entre deux valeurs distinctes, que les transducteurs permettent 
d’atteindre facilement juste en se servant d’un simple logomètre. 

Pour cela, Il faut que les deux éléments moteurs aient des couples dont l’expression 
donne une relation entre la mesure et l’angle de rotation de l’aiguille. 

Les deux éléments étant montés sur le même axe, on s’arrange pour qu’il n’y ait 
aucun couple résistant. Pour cela, les courants dans l’équipage sont amenés par des 
spiraux ayant un couple de tension négligeable. 

On a : 

                                             gifi .. 2211          et                                            (VI.1) 

À l’équilibre : 𝛤₁ + 𝛤₂ = 0 

Et par la suite, on aura : 

                                                       
 
 

 




g

f

i

i


1

2                                                                    (VI.2) 

* Pour des éléments électrostatiques : 
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           gufu .. 2211          et              d’où :      
 
 

 




g

f

u

u


1

2                                 (VI.3) 

* On peut bien avoir aussi des éléments moteurs quadratiques : 

              gifi .. 2

22

2

11          et             d ou :    
 
 

 




g

f

i

i


1

2                           (VI.4) 

Les éléments moteurs associes peuvent être de nature différente, mais très souvent, 

c’est le même type de moteurs. 

Pour avoir une fonction de l’angle différente, on décale les équipages, ce qui donne 

donc : 

                                      0. 0210   fififf         alors                        (VI.5) 

Alors : 

          
 
 

 



F

f

f

i

i



  0

2

1       ou bien :    
 
 

 θG 
g

g

i

i







 0

1

2                          (VI.6) 

On peut construire des logomètres avec chaque type de moteur. Ce qui permet 

d’avoir plusieurs variantes de même principe mais d’usage différent. 

 

VI.2. LOGOMÈTRE MAGNÉTOÉLECTRIQUE : 

 

i) Un courant 𝑖₁ amené dans le cadre C produit un champ d’induction magnétique 

𝐵₁⃗⃗⃗⃗   qui lui soit proportionnelle. 

ii) Un courant 𝑖₂ amené dans le cadre C’ produit lui aussi, un champ d’induction 

magnétique 𝐵₂⃗⃗⃗⃗   qui lui soit proportionnelle. 

Le mode constructif et fonctionnel 

d’un logomètre magnétoélectrique 

est semblable à celui d’un élément 

moteur magnétoélectrique. Mais, au 

lieu d’un cadre, on utilise deux en les 

plaçant de façon solidaire et 

perpendiculaire l’un par rapport à 

L’autre. 

 
Figure VI.12 : Principe d’un logomètre 

magnétoélectrique. 
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La résultante des deux inductions est telle qu’elle fait avec le cadre, un angle 𝛳 
suivant la relation suivante : 

                                                       
2

1

2

1

i

i

B

B
tg                                                                  (VI.7) 

Les deux cadres s’orientent de façon que la résultante de leurs inductions soit 
perpendiculaire au champ directeur de l’aimant. L’aiguille solidaire à l’axe indique la 
valeur correspondante au quotient des deux courants i1 et i2 

 

VI.3. LOGOMÈTRE ÉLECTRODYNAMIQUE : 

 

 

*) Si on prend φ1 comme étant le déphasage entre le courant i1 traversant la bobine 
C et le courant total i. 

**) Si on prend φ2 comme étant le déphasage entre la courant i2 traversant la bobine 
C’ et le courant total i. 

**) et si θ est l’ongle que fait le vecteur d’induction magnétique 𝐵⃗   de la bobine 
courant par rapport à normale à la bobine C. 

Donc, le moment du couple Γi qui agit sur le cadre C1 peut alors être écrit sous forme : 

- Pour C : 

                                                  sin..cos. 111 iik                                                         (VI.8) 

- Pour C’ : 

                                


 cos..cos.
2

sin..cos. 22222 iikiik 







                          (VI.9) 

Par construction, on peut choisir (k = k’), qui permet à équilibre, où 1 = 2 de 
ramener l’expression (VI.9) à la forme suivante : 

De façon semblable à un 
logomètre magnétoélectrique, un 
logomètre électrodynamique est 
décrit par le même mode constructif 
et fonctionnel. Il suffit de faire 
remplacer l’aimant permanent par 
une bobine courant identique à celle 
du wattmètre. Il faut remplacer aussi 
la bobine tension par un ensemble de 
deux bobines solidaires et 
perpendiculaires l’une par rapport de 
l’autre (Figure VI.2). 

 
Figure VI.2 : Principe d’un logomètre 

électrodynamique. 
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                                         1.
cos

cos

cos..cos.

sin..cos.

22

11

22

11

2

1 













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tg

i

i

iik

iik
                     (VI.10) 

D’ où : 

                                                    
22

11

cos

cos






i

i
tg                                                               (VI.11) 

 

VI.4. APPLICATIONS : 

 

VI.4.1. Logo-phasemètre : 

 

Ce solénoïde est placé en série avec le récepteur à étudier. Il est donc parcouru par 
le courant alternatif i. Les deux cadres sont électriquement montés en dérivation aux 
bornes du récepteur, mais on a ajouté en série avec le second cadre, une inductance 
pure de valeur L (élevée). 

On peut admettre pour la tension et courant des expressions de la forme : 

 

                              tUtu cos2          et              tIti cos2                     (VI.12) 

 

En négligeant les résistances et les selfs inductances des cadres, on peut montrer 
que le repérage de la position du cadre permet de mesurer φ. 

 

Un phasemètre est fait de deux 
cadres rectangulaires identiques 
disposés dans deux plans 
orthogonaux, solidaires l’un de 
l’autre et ayant un axe de symétrie 
commun. 

Ces deux cadres sont plongés 

dans un champ d’induction 𝐵⃗   
uniforme, crée par un solénoïde ou 
par une paire de bobine comme celle 
qu’on a étudié au chapitre IV (§.IV.1) 
dans le cas du wattmètre. 

 
Figure VI.2 : Schéma électrique d’un 

logo-phasemètre. 
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On appelle l’angle oriente θ que fait la normale au cadre n°1 avec la direction de 𝐵⃗  . 
Le moment du couple qui s’exerce sur ce cadre est alors (en valeur instantanée) : 

- Pour le cadre n°1 : 

 

                                                 sinsin. 111 BsinBm                                           (VI.13) 

- Pour le cadre n°2 : 

 

                                          


cos
2

sin. 222 BsinBm 







                                   (VI.14) 

 

L’induction 𝐵⃗   est sinusoïdale et proportionnelle au courant en ligne : 

 

                                                  tkIikB cos2.                                     (VI.15) 

Les courants i1 et i2 valent : 

                                   









2
cos

2
cos

2
21





 t

L

U
it

R

U
i          et              (VI.16) 

Les moments des couples s’écrivent alors : 

- Pour le cadre n°1 : 

                            tIt
R

U
nsk cos2.cos.

2
sin... 11

                      (VI.17) 

- Pour le cadre n°2 : 

                           





 







 tIt

L

U
nsk cos2.

2
cos.

2
sin... 22

                      (VI.18) 

 

Les valeurs de ces deux moments varient rapidement. La position d’équilibre du 
cadre est déterminée par l’antagonisme des deux valeurs moyennes et non par l’égalité 
(qui serait irréalisable) des valeurs instantanées. 

Par conséquent, il ne faut surtout par simplifier par   tcos . 
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Prenons les valeurs moyennes de chaque membre en utilisant l’identité : 

 

                                           qpqpqp  coscoscoscos2                                 (VI.19) 

 

Ce que donne : 

                        

























 







2
cos

2
2cos

2
coscos2 ttt             (VI.20) 

 

Or, le terme qui d’éprend du temps a une valeur moyenne nulle, il reste : 

- Pour le cadre n°1 :  

                                             cos.sin... 11
R

UI
nsk                                                    (VI.21) 

 

- Pour le cadre n°2 : 

                                              







 






2
cos.cos... 22

L

UI
nsk                                  (VI.22) 

 

À l’équilibre, il y a égalité entre ces deux derniers couples moyens, ce qui donne : 

 

                                                        tg
n

n
tg .

1

2                                                             (VI.23) 

 

Il est donc possible, quand on choisit bien les éléments de l’appareil, d’obtenir 
l’égalité  tgtg  . 

Mais, il faut bien remarquer que cette égalité n’est valable que pour une fréquence 
bien déterminée et pour un régime bien sinusoïdal. 
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VI.4.1. Logo-fréquencemètre : 

 

Ce solénoïde est placé en série avec le récepteur à étudier. Il est donc parcouru par 
le courant alternatif i. 

Les deux cadres sont électriquement montés en dérivation aux bornes du récepteur, 
mais on a ajouté, en série, une inductance L, avec le premier cadre et une capacité C 
avec le second (Figure IV.4) ci-dessus. 

Nous aurons alors : 

 

- Pour le cadre n°1 :  

                                                           uCi .1                                                               (VI.24) 

 

- Pour le cadre n°2 : 

                                                              
L

u
i 2                                                              (VI.25) 

 

La position d’équilibre est telle que l’aiguille fait avec la direction avec l’induction 

magnétique 𝐵⃗  un angle θ qui est donné par la relation suivante : 

 

 

 

De la même façon, un 
fréquencemètre est fait de deux 
cadres rectangulaires identiques 
aussi identiques, disposés dans 
deux plans orthogonaux, solidaires 
l’un de l’autre et ayant un axe de 
symétrie commun. 

Ces deux cadres sont plongés 

dans un champ d’induction 𝐵⃗   
uniforme, crée par un solénoïde ou 
par une paire de bobine comme celle 
qu’on a vu précédemment. 

 
Figure VI.2 : Schéma électrique d’un 

logo-phasemètre. 
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D’où : 

                             222

2

1 ..4.
.

.. fLCkLCk

L

u

uC
k

i

i
ktg 




 









                             (VI.27) 

 

Où : L et C étant des constantes connues par construction. 

 

Alors, on aura enfin : 

                                                          2. ktg                                                               (VI.28) 

 

 

Où, on voit que l’angle de déviation de l’aiguille θ (dérivation) est proportionnel au 
carré de la fréquence f. 

 

 

 

 

 

 

  



Chapitre VII 

 

Les ponts de mesure sont des dispositifs indicateurs de zéro, qui présentent dans 
la pratique, un moyen de mesure très précis pour beaucoup de grandeurs électriques 
et électroniques. À présent, l’étude des ponts présente surtout un intérêt pédagogique. 
Dans ce qui suit, nous allons exposer cette technique dite "méthode du zéro" qu'on 
utilise en continu ou en alternatif selon la nature de la grandeur à mesurer. 

Aussi, nous allons voir par la suite que le nombre de variantes de ponts est 
relativement important. Dans la pratique, cette situation relative à la multiplicité des 
bâtis de montage, ne représente pas en fait un problème onéreux, car, tout ces ponts 
sont réalisés à partir d'un bâti commun muni de plusieurs prises prévus pour assurer 
les modifications nécessaires correspondantes à la spécificité de chaque variante. 

 

VII.1. LES PONTS EN CONTINU : 

En régime continu, les ponts sont très souvent, utilisés pour mesurer des 
résistances. La gamme de résistances mesurables peut aller du dixième du micro 
ohms (10-7 Ω) à quelques méga ohms (10+6 Ω). 

 

VII.1.1. Principe : 

 

On dispose la grandeur à mesurer 
X dans une branche et dans les trois 
autres, des grandeurs A, B, C 
connues dont une au moins est 
réglable. On alimente le dispositif par 
une tension continue de f.e.m E entre 
les deux points M et N. La branche 
d'équilibre est placée entre les points 
O et P et munie d'un détecteur de 
très faibles courants (galvanomètre) 
quand ils sont court-circuités, ou d'un 
détecteur de petites tensions (micro 
voltmètre) quand ils sont en circuits 
ouverts. 

 
Figure VII.1 : Schéma de principe 

d'un pont de mesure. 
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VII.1.2. Équilibre du pont : 

 

Pour éviter cette situation, il est nécessaire de régler un élément, puis un autre, 
ensuite revenir au premier et ainsi de suite jusqu'à l'obtention du zéro ou d'un minimum 
aigu. C'est ce cas qui correspond au "vrai équilibre". 

 

On dit que le pont est équilibré lorsque l'une et/ou l'autre des conditions suivantes 
sont réalisées dans la branche d'équilibre : 

i) si, le courant de court-circuit est nul, ig = 0. 

ii) si, la tension de circuit-ouvert est égale à zéro, U = 0. 

Une fois l'équilibre réalisé, on peut appliquer le résultat de la relation suivante 
exprimant la grandeur à mesurer en fonction des autres éléments du pont. 

 

                                                    
B

CA
X

.
                                                                             (VII.I) 

 

VII.1.3. Sensibilité du pont : 

La sensibilité d'un pont est définie par la plus petite variation relative de la branche 
de réglage entraînant un déséquilibre perceptible du pont. Donc, si on considère C 
comme la branche de réglage, quand on provoque une petite variation ΔC de C, une 
tension de déséquilibre ΔU apparaît. 

 

Le développement de l'automatisation 
dans l'industrie a conduit à réaliser des 
ponts à équilibrage totalement 
automatique pour assurer une 
commande correcte des mécanismes 
qui se trouvent en aval comme une 
machine ou un moteur électrique. 

Pour atteindre l'équilibre du pont nous 
serons obligés d'agir constamment sur 
les branches contenant les éléments 
variables jusqu'à la réalisation d'un vrai 
équilibre. 

 
Figure VII.2 : Courbe d'équilibre du pont 
                   en fonction du réglage. 
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La sensibilité σ du pont peut alors être calculée et exprimée en fonction de ΔC et 
ΔU de la façon suivante : 

En appliquant la règle du diviseur de tension, la tension dans la branche d'équilibre 
peut être donnée par la relation : 

                                         














CX

X

BA

A
EU                                                                    (VII.2) 

 

Si, on fait varier C de ΔC, il apparaît une tension de déséquilibre ΔU égale à : 

 

                    
  





























CCXBA

CABXAC
E

CCX

X

BA

A
EU                     (VII.3) 

Car à l'équilibre on a (AC = BX). 

 

                                     
  















CCXBA

CA
EU                                                     (VII.4) 

 

En posant : 
X

C

A

B
x   et en négligeant 

X

C devant 1 + X, la relation (VII.4) devient : 

 

                                        
  C

C

x

x
EU












 .

1
2

                                                                 (VII.5) 

 

La sensibilité σ du pont est enfin définie par : 

 

                                             
 21 x

x
E

C

C

U







                                                               (VII.6) 

 

On voit que la fonction σ devient maximale pour x = 1. Donc, la meilleure sensibilité 
d'un pont est atteinte quand B = A et X = C. 
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VII.1.4. Pont de Wheatstone : 

 

À l’opposé de cette situation, si cette résistance devient très grande, on est conduit 
à augmenter la tension d’alimentation pour accroitre la sensibilité du pont, ce qui fait 
apparaitre des courants de fuites très souvent appréciable qui fait automatiquement 
"fausser les mesures". 

 

À l’équilibre du pont, dans les deux cas, on peut appliquer l’une ou l’autre des 
conditions d’équilibre : 

Soit, la condition d’équilibre dite "du circuit" ou : ig = 0. 

Soit, la condition d’équilibre dite "du circuit ouvert" ou : U = 0. 

Dans le premier cas, le circuit équivalent devient celui de la Figure (IV.4), on peut 
alors écrire les équations suivantes : 

                                                 
4221133 et             iRiRiRiR x                        (VII.6) 

                                             
      Figure VII.4 : Branche d’équilibre                                   Figure VIi.4 : Branche d’équilibre 

                  court-circuitée.                                                              en circuit ouvert. 

 

Ce pont, voir (Figure VII.3), 
convient pour mesurer 
principalement des résistances dans 
la gamme comprise entre 1 Ω et 1 
MΩ. Quand la résistance à mesuré 

𝑅𝑥 devient très faible, les résistances 
de connexions et des fils de contacts 
sont comptés et ne peuvent être 
considérées comme des valeurs 
négligeables. Car, si on les prend 
pas en compte, elles peuvent 
facilement "fausser les mesures". 

 

 
Figure VII.3 : Pont de Wheatstone. 
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Dans le deuxième cas, le circuit équivalent devient celui de la figure (VII.5). On en 

déduit donc que : 𝑖1 = 𝑖2      et      𝑖3 = 𝑖4 

À partir de ces équations, un calcul simple permet d’aboutir au résultat suivant : 

 

                                           
1

32.

R

RR
Rx                                                                                     (VII.7) 

 

VII.1.5. Pont de Thomson : 

Ce pont permet la mesure précise des résistances très faibles à partir de 10−7 Ω, 
car il élimine les résistances des fils de connexions et de contacts. La résistance 
inconnue notée Rx et étalon R3 sont à quatre bornes et les connexions leurs étant 
extérieures, de plus les résistances de contacts et A, D’, D’’, et B sont en série avec 
R0, R’, R’’, et R2 de valeurs très élevées de telle Sorte que l’influence de ces résistances 
de contacts deviennent très négligeables (Figure VII.6.). 

 
Figure VII.6 : Pont double de Thomson. 

 

Les résistances du triangle DD’D’’ peuvent être transformées en celles de L’étoile 
OD, OD’, OD’’ et vis-versa (voire les Figure-IV.7. et IV.8. suivante) selon Les 
expressions de passage donné par les relations (IV.8) : 

                                            
'''

'''.

0 RRR

RR
Ra


                                                    (VIi.8-a) 

                                            
'''

'.

0

0

RRR

RR
Rb


                                                    (VII.8-b) 

                                            
'''

''.

0

0

RRR

RR
Rc


                                                    (VII.8-c) 
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        Figure VII.7 : Circuit étoile.                                     Figure VII.8 : Circuit triangle. 

 

On obtient alors un schéma équivalent ramené à celui d’un pont de Wheatstone 
(Figure VII.3) déjà vus précédemment où les résistances 𝑟𝑔 ,  𝑅3. et 𝑅𝑥 devient 

respectivement en série avec 𝑅𝑎 ,  𝑅𝑏 et 𝑅𝑐. 

La condition d’équilibre du pont permet d’écrire : 
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                                                    (VII.10) 

Si on s’arrange à réaliser l’égalité : 










'

''

1

2

R

R

R

R , on obtient la relation : 

                                       
1

2
3.

R

R
RRx                                                                                       (VII.11) 

Qui est celle déjà trouvée (expression VII.7) dans le pont de Wheatstone. 

 

VII.2. LES PONTS EN ALTERNATIF : 

En alternatif, les résistances sont remplacés. La mesure précise d’une impédance 
impose l’emploi d’une m’méthode de zéro. Les montages utilisés sont dérivé du 
Wheatstone. 

 

VII.2.1. Principe : 

Le principe reste le même que celui du montage en continu (§.VII.1.1) .On dispose 
l’impédance à mesurer. 
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Donc, selon ce qui a été vu précédemment au paragraphe (§.VII.1.4) on peut écrire : 

                                
3311 iZiZ              et                   

4422 iZiZ   

Alors, pour (i = 0), on aura : 

                                             
21 ii              et                   

43 ii   

Donc, si : 

                                                 
1

2
34 .

Z

Z
ZZZ x                                             (VII.12-a) 

Alors : 

                                                













1234

1

2

3 .

x

x
Z

Z
ZZ

                                    (VII.12-b) 

 

Cet équilibre peut être réalisé par une infinité de façons, mais pour une manipulation 
commode, on réduit le nombre de paramètres en constituant deux des branches du 
pont uniquement avec des résistances pures notées P et Q. On obtient alors : 

 i) les ponts (P/Q) qui permettent de mesures les impédances capacitives, 
 
 ii) les ponts (PxQ) qui permettent de mesurer les impédances inductives. 
 

dans une branche du pont et dans les 
trois autres des impédances 
connues dont l’une au moins est 
réglable. La source de tension ou de 
courant devient un générateur 
alternatif, souvent un GBF. 

L’appareil indicateur de zéro sera 
remplacé par un écouteur 
téléphonique délivrant un signal 
audible ou tout simplement un 
oscilloscope. 

Lorsque la condition d’équilibre du 
pont est réalisée, le courant i dans 
l’écouteur devient nul. 

 

 
Figure VII.9 : Schéma de principe d'un 

pont de mesure en alternatif. 
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VII.2.2. Ponts en (P/Q) : 

 

 

Son admittance étant donnée par : 

                                                              x
xx

jC
RZ


11                                (VII.13-a) 

D'autres part, on a la relation : 
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À l'équilibre : 
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d'où : 
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On en tire donc : 
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
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                                                         (VII.13-e) 

 

On remplace les impédances des 
deux branches voisines d’un même 
côté par des résistances pures 
notées P et Q. Dans la troisième 
branche on met une boîte de 
condensateurs étalonnés à 
diélectrique parfait et une boîte de 
résistance également étalonnée, 
montée en parallèle. 

La dernière branche comporte la 
grandeur à mesurer, qui, représente 
une capacité Cs d’un condensateur 
dont le diélectrique imparfait 
présente une résistance de fuite Rs. 

 
Figure VII.10 : Pont de Sauty parallèle. 
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VII.2.3. Ponts en (P.Q) : 

 

Son admittance étant donnée par : 

                                                                xxx jLRZ                                 (VII.14-a) 

D'autres part, on a la relation : 

                                                                0
00

11
jC

RZ
                               (VII.14-b) 

À l'équilibre :                         PQ
Z

ZQPZZ xx .
1

0

0                             (VII.14-c) 

d'où : 
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On en tire donc : 
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Il faut noter que, quelle que soit la grandeur à mesurer (capacité ou inductance), la 
branche de réglage est une impédance composée de C0 et R0 qu'on peut disposer soit 
en série soit en parallèle. Car, technologiquement, il est plus aisé de construire des 
capacités ayant une précision suffisante que dans le cas des inductances. 

 

Les résistances P et Q sont 
montées dans deux branches 
opposées, les deux autres sont 
constituées par : 

- d'un part, d'un condensateur 
variable étalonné C0 et de sa 
résistance variable, étalonné R0 
supposée en parallèle. 

- d'autre part, par une bobine de 
coefficient d'inductance propre Lx et 
de résistance interne Rx supposée 
montrée en série. 

 
Figure VII.11 : Pont de Maxwell. 
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VII.3. MESURE DE CAPACITÉS : 

Théoriquement, un condensateur de pure capacité est obtenue en plaçant entre ses 
armatures un diélectrique représentant un isolant parfait. Mais, à cause du phénomène 
d’absorption diélectrique, ce dernier n’est jamais parfait. Alors, pour réaliser des 
condensateurs de précision, il faut utiliser des diélectriques de très bonne qualité pour 
que l’absorption diélectrique soit la plus faible possible. 

 

VII.3.1. Schémas équivalents : 

À cause des pertes d’énergie dues à la conductibilité diélectrique, le condensateur 
se comporte comme un ensemble constitué d’une capacité pure C et d’une résistance 
de perte r. Deux schémas équivalents "série" ou "parallèle" (Figure VII.12).peuvent 
alors être trouvés. 

 
Figure VII.12 : Schémas équivalent simplifiés d’un condensateur réel. 

 

Cs et r peuvent être exprimées en fonction de Cp et R ou inversement par : 

 

VII.3.2. Facteur de dissipation ou de perte D : 

Ce facteur D, est défini comme étant le rapport entre la puissance active et le module 
de la puissance réactive développée entre les bornes d’un condensateur réel. Ce 
phénomène de dissipation, vient du fait que la résistance entre ses bornes n'est jamais 
véritablement infinie, conduisant à un certain niveau de courant continu "fuite", ce qui 
limite finalement le pouvoir de stocker une charge pour des longues durées. 

Des condensateurs à faibles fuites diélectriques ont été mis au point pour palier à 
ce problème. 
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http://en.wikipedia.org/wiki/Direct_current
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VII.3.3. Angle de perte δ : 

Dans le cas d’un condensateur parfait, le courant I  est en retard de (𝜋/2) par rapport 

à la tension U . 

Dans la pratique, cet angle est inférieur (𝜋/2), soit : (𝜋/2 -𝛿) 

On peut facilement montrer la relation suivante : 
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Si, plusieurs condensateurs sont associés en parallèles dont chacun est représenté 
par (Cpi, Ri, Di), le facteur de dissipation global D de l’ensemble sera donné par: 
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VII.3.4. Pont de Sauty-Wien : 

* Dans le cas d’un schéma équivalent 
série (S.E.S) : srCD  r 

* Dans le cas d’un schéma équivalent 

parallèle (S.E.P) : 
pRC

D
1

  

* Dans les bobines de qualité (D <<1), 

on aura : Cp = Cs et R = QD-2r.  
Figure VII.13 : Représentation de 

l’angle de perte 𝛿 d’un 
condensateur. 

Le pont, monté en (P/Q) est utilisé 
pour la mesure des capacités de très 
bonne qualité, c’est-à-dire celles qui 
présentent un facteur de dissipation D 
de valeur très faible (faible perte). 

Cette mesure est réalisée par 
comparaison avec un autre 
condensateur où le schéma 
équivalent série a été adopté. 

 
Figure V.14 : Pont de Sauty-Wien. 
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Il faut noter que, dans la littérature, on peut constater qu’un même peut être attribué 
à des noms différents : un pont en " (P/Q) parallèle" par exemple est donné dans 
certains ouvrages comme étant le pont de Wien, alors que dans d’autres, ce même 
pont porte le nom de Nernest ou encore celui de kohlrausch. 

Pour chercher l’équilibre du pont, on commute tout d’abord, mais de façon arbitraire, 
le commutateur sur la branche contenant (C2, r2) ou sur celle qui contient (Cx, rx) et on 
agit simultanément sur R1 et r. On observe le sens de l’évolution de l’équilibre. Si, on 
constate qu’on est en train de s’éloigner du vrai équilibre, on comprend que le choix du 
sens du commutateur est mauvais. 

Donc, on doit changer de sens et on continue normalement à rechercher la nouvelle 
position d’équilibre. 

 

VII.3.5. Pont de Nernest : 

 

 

 

- Si r est en série avec C2, la 
condition d’équilibre donne : 
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- Si r est en série avec Cx, la 
condition d’équilibre donne : 
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Ce pont, monté en (P/Q) convient 
pour la mesure des capacités de très 
fortes pertes, c’est-à-dire celles qui 
présentent un facteur de dissipation D 
de valeur très important comme dans 
le cas des électrolytes. Car, l’élément 
essentiel de la mesure devient 
justement la résistance de fuite Rx. 
Cx, ne joue qu’un rôle parasite. 

Dans ce pont, les condensateurs 
sont représentés par leur schéma 
équivalent parallèle. 

 
Figure V.15 : Pont de Nernest. 
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VII.3.6. Pont de Schering : 

 

 

De plus, si on veut tenir compte de ce que C2 et R3 ne soient pas pures, on doit alors 
écrire : 
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Les relations (VII.21) ci-dessus seront alors remplacées par : 

 

 

- Si R est en série avec C2, la 
condition d’équilibre donne : 
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- Si R est en série avec CX, la 
condition d’équilibre donne : 
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On utilise ce pont en HF pour 
mesurer des capacités et des pertes 
diélectriques des dans condensateur 
et câbles à haute tension, ainsi que 
dans des isolants solides ou liquide. 

Si on suppose que : R1, R3, C1, et 
C2 sont des éléments purs, alors la 
condition d’équilibre donne : 
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Figure VII.16 : Pont de Schering. 
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À l’équilibre, on obtient les expressions déjà vues précédemment (voir la relation 
VII.23 donnée ci-dessus) : 
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Une variante de ce pont de 
Schering est destinée à la mesure des 
capacités chimiques et polarisées 
(voir Fig. IV .17.ci-contre). 

La valeur de ces capacités est 
généralement, supposée élevée et, le 
courant de fuite est aussi important. 

Dans ce cas, la branche de mesure 
qui contient le condensateur chimique 
est alimentée par une source de 
tension continue E, séparée de la 
source alternative à l’aide d’une self 
de choc L, qui, ne laisse pas le 
courant alternatif de passer à travers 
les bornes polarisés de la source E. 

La capacité C, par contre, bloque le 
courant continu de passer par le 
détecteur de son audible D, prévu de 

ne fonctionner qu’en régime alternatif. 

 
Figure VII.17 : Pont de Schering 
pour mesurer les condensateurs 

polarisés. 
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VII.4. MESURE D’INDUCTANCE : 

Une bobine d’inductance propre est réalisée par un fil conducteur enroulé en spires 
de différentes formes. 

Cette bobine, comme pour le cas du conducteur, ne peut pas jamais être idéale, et 
par conséquent, l’énergie qu’elle emmagasine, elle aussi, ne peut être totalement 
conservée. L’énergie perdue sera alors, dissipée par effet Joule dans la résistance du 
conducteur et par hystérésis ainsi que par courants de Foucault si la bobine est munie 
d’un noyau ferromagnétique. 

 

VII.4.1. Schémas équivalents :  

On peut représenter une bobine soit par l’association en série d’une inductance 
propre Ls et d’une résistance r, soit par l’association en parallèle d’une inductance 
propre Lp et d’une résistance R (Figure VII.18). 

 
Figure VII.18 : Schémas équivalent simplifiés d’une bobine réelle. 

 

Ls et r peuvent être exprimées en fonction de Lp et R ou inversement par : 

 

 

VII.4.2. Facteur de qualité Q : 

Ce facteur généralement noté Q, est défini comme étant le rapport entre la 
puissance active et le module de la puissance réactive. 
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VII.4.3. Angle de perte 𝜹 : 

Comme dans le cas d’un condensateur parfait, dans une bobine parfaite, le courant 
est en avance de (𝜋/2) par rapport à la tension. Dans la pratique, cet angle est inférieur 
(𝜋/2), soit : (𝜋/2 -𝛿) 

On peut facilement montrer la relation suivante : 
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VII.4.4. Pont de Siemens : 

 

 

 

Quand on réalise l’équilibre du pont, on a les relations suivantes selon que la 
résistance r est en série avec L2  ou Lx. 

 

* Dans le cas d’un schéma équivalent 

série (S.E.S) : 
r

L
Q s
 r 

* Dans le cas d’un schéma équivalent 

parallèle (S.E.P) : 
pL

R
Q


  

* Dans les bobines de qualité (Q >>1), 
on aura : Lp = Ls et R = Q2 r. 

 
Figure VII.19 : Angle de perte 𝛿 

d’une bobine. 

Le pont de Siemens est 
l’équivalent pour les inductances 
propres, du pont de Saut-Wien pour 
les capacités. Son seul inconvénient 
est la nécessité de connaît la 
résistance apparente r2 de la bobine 
étalonnée L2, pour pouvoir déterminer 
la résistance de fuite rx, et cela pour la 
fréquence utilisée. 

 
Figure V.20 : Pont de Siemens. 
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VII.4.5. Pont de Maxwell : 

 

 

                          Lx = R2R3C1 ; rx = R2R3/R1   et    Qx = 𝜔Lx/rx = 𝜔R1C1               (VII.29) 

 

VII.4.6. Pont de Hay : 

 

- Si r est en série avec L2, la 
condition d’équilibre donne : 
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- Si r est en série avec Lx, la 
condition d’équilibre donne : 
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Ce pont en P.Q convient pour la 
mesure d’inductance propre à faible 
argument : C'est-à-dire à faible 
facteur de qualité (Q < 1). 

Il est aussi utilisé pour la mesure 
des résistances inductives en courant 
alternatif. 

La condition d’équilibre donne : 

 

 
Figure VII.22 : Pont de Maxwell. 

Par contre, si le facteur de qualité 
d’une bobine est trop grand (Q >> 1), 
on utilise alors, le pont de Hay, qui ne 
diffère de celui de Maxwell que par le 
remplacement du schéma parallèle de 
la capacité par le schéma série. 

À la condition d’équilibre, on obtient 
les relations suivantes seront 
appliquées : 

 
Figure VII.22 : Pont de Hay. 
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Si, de plus, on a : 

   1112  rCrLx     et    , les relations précédentes (VII.30) deviennent : 
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On aura encore des relations plus simples, si on adopte le schéma parallèle (Lpx, 
Rx) au lien du schéma série (Lsx, rx) : 
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VII.4.7. Pont de Owen : 

 

 

 

Ce pont a l’avantage, par rapport à 
ceux de Maxwell et de Hay, de 
pouvoir mesurer, d’une manière 
précise, les inductances propres dans 
un domaine très étendu [1𝜇𝐻;1𝑚𝐻]. 
Cette mesure est réalisée seulement 
par l’intermédiaire d’une résistance 
de précision, étalonnée et finement 
réglable R2, au lieu d’un 
condensateur. Il convient aussi, pour 
mesurer les facteurs de qualités de 
valeurs moyennes. 

Quand l’équilibre du pont est établi, 
on obtient les relations les suivantes : 

 
Figure VII.23 : Pont de Owen. 
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VII.4.8. Pont d’Anderson : 
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Figure VII.25 : Équivalence Triangle-Étoile. 

 

Cette transformation permet de placer Z11, Z12 et Z13 en série de respectivement 
avec R4, le détecteur et R3. 

À l’équilibre du pont, les relations suivantes : 

 

Ce pont permet de conserver une 
bonne précision, malgré sa 
constitution complexe, même aux 
fréquences industrielles. 

Les éléments du triangle formé par 
les deux résistances R3, R5 et le 
condensateur C peuvent être 
remplacés par les éléments d'un 
schéma équivalent en étoile, comme 
celui du cas déjà exposé au pont de 
Thomson (§.VII.1.5). Les expressions 
de correspondances seront alors : 

 
FigureVII.24 : Pont d’Anderson. 
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VII.5. MESURE D’INDUCTANCES MUTUELLES : 

Le coefficient d’inductance mutuelle M, qui a la même dimension que l’inductance 
propre L, et est un paramètre qui caractérise l’influence électromagnétique qu’exerce 
une bobine sur une autre et réciproquement. 

La mesure de ce coefficient permet de donner une indication sur le couplage 
magnétique entre bobine k, problème qu’on rencontre souvent dans les 
transformateurs, circuits couplés ou l’association entre bobines inter-influençable. 

 

VII.5.1. Pont de Carey-Foster : 

 

                                        et    



3

33111
C

j
RZjLrZ                                (VII.37-a) 

Ainsi que : 

                                           21 IIjMIjME                                        (VII.37-b) 

À l’équilibre : U = 0, alors on aura : 

D’une part, 

                                                                0111  IjLrE                            (VII.37-c) 

Et comme d’autre part : 

                                                                  01

3

322 







 I

C

j
RIR


                (VII.37-d) 

Ce pont permet de mesurer le 
coefficient D’inductance mutuelle M, 
indépendamment de la fréquence 
utilisée. 

Le seul inconvénient est qu’il est 
souvent difficile de régler surtout 
lorsqu’il existe dans le pont un circuit 
magnétique. Avec les éléments de la 
Figure VII.26 ci-contre on peut écrire 
les relations suivantes : 

 
Figure VII.26 : Pont de Carrey-

Foster. 
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Nous pouvons tirer I2 de cette dernière équation dans et de le remplace dans 
l’équation suivante : 

                           01 111

322

1 







 IjLrI
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j

R

R
jM 


                                             (VII.38) 

Par comparaison de termes réels et imaginaire, on aura : 
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                                                                       (VII.39) 

 

Si on veut faire introduire les résistances de pertes des bobines et du condensateur, 
on opte le schéma équivalent série pour L1, L2 et C3. De plus, si, on remplace 
l’inductance mutuelle à trois bornes par l’étoile équivalente, on obtient le schéma d’un 
pont classique (voir Figure VII.27). 

 

    
Figure VII.27 : Schéma équivalent d’une inductance mutuelle à trois bornes par un schéma 

étoile équivalent. 

 
Les relations d’équilibre deviennent : 
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                                              (VII.40) 
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Pour le bon déroulement de la mesure, on peut toujours choisir : 

332

'

11 rRRrr     et     

Donc, on aura finalement : 

 

                                               
 


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





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
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                                  (VIi.41) 

 

VII.5.2. Pont de Campbell : 

À l’équilibre, on a : 

                I
C

jIjMu .
1

.0


                              

d’où : 

                         
  CfC

M
1

.
2

11
22


  

Il faut noter, que cette dernière relation est obtenue en effectuant quelques 
approximations simplificatrices, car la résistance de perte du condensateur r3 ainsi que 
la capacité répartie propre Cd et mutuelle Cm des deux enroulements L1 et L2 sont 
suffisamment faibles et par conséquent, peuvent être largement considérées comme 
négligeables. 

 

 

Ce pont est représenté par la 
(Figure VII.28) ci-contre. L’équilibre 
est réalisé lorsque le courant 
parcourant le détecteur D est égal à 
zéro. La tension induite par le 
passage de I dans L1, sera donné aux 
bornes de L2 par E = jωM.I ; ou M est 
l’inductance mutuelle. 

Aux bornes du condensateur C, on 

retrouve la tension I
C

jVc .
1


 . 

 
Figure VII.28 : Pont de Campbell. 
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VII.5.3. Pont de Smith : 

 

                       0'.
'

1
'..  IjMI

C
jIRIr 


                                                (VII.42-a) 

On tire I’ de cette dernière relation et on le remplace dans la première. On trouve 
alors l’expression suivante : 
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De plus, si on opte pour le choix de 
2'L  et 

'

1
'2

C
Rr


 , on peut alors avoir la 

relation Suivante : 

                      0
1

'' 2 







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

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D’où : 
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L’avantage du pont de Smith par 
rapport à celui de Campbell est la 
compensation de l’influence de la 
résistance de perte r du condensateur 
C qui perturbe la mesure. 

À l’équilibre, le courant dans le 
détecteur D est nul, alors on peut 
écrire : 

  '.
'

1
''.'.' 22 I

C
LjIRrIjM 













D’autre part, on a aussi la relation 
suivante : 

 
Figure VII.29 : Pont de Smith. 
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Remarque : 

On constate que d’après leurs relations finales (42 et 44) qu’il est possible d’utiliser 
les ponts de Campbell et de Smith pour mesurer la fréquence si on possède des 
bobines étalonnées en coefficient d’inductance mutuelle. 

 

VII.6. MESURE DE FRÉQUENCE : 

Pour mesurer une fréquence, on doit utiliser soit directement un fréquencemètre 
électronique qui est précis mais couteux, soit un pont de mesure, dont les 
performances restent aussi comparables mais beaucoup plus moins cher. 

 

6.1. Pont de Wien-Robinson : 

 

  
3

4

1

3

2

1

C

C

R

R

R

R
      et     1.... 2

4343 CCRR  

 

De plus, si, on pose : 

  CCCRRRR  .2 434321    et     ;   

 

Alors, la fréquence mesurée sera donnée par : 

 

𝑓 =
1

2𝜋𝑅𝐶
 

 

Ce pont convient pour la mesure des 
fréquences basses (f < 20 KHz). Il ne 
peut pas travailler aux fréquences 
élevées, car les impédances parasites 
assez importantes modifient 
considérablement l’équilibre. 

La condition d’équilibre permet 
d’écrire :  

Figure VII.30 : Pont de Wien-
Robinson. 
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IV-6.2. Ponts en double T : 

 

 

                   𝑅4 + 𝑅5 −
1

𝑅3𝐶1𝐶2𝜔2 + 𝑗 (𝑅4𝑅5𝐶6𝜔 −
1

𝐶1𝜔
−

1

𝐶2𝜔
) = 0                        (VII.46-a) 

d’où : 

                    𝑅4 + 𝑅5 −
1

𝑅3𝐶1𝐶2𝜔2 + 𝑗 (𝑅4𝑅5𝐶6𝜔 −
1

𝐶1𝜔
−

1

𝐶2𝜔
) = 0                       (VII.46-b) 

 

Alors, dans la pratique on peut toujours choisir : 

 

                                        2𝑅3 = 𝑅4 = 𝑅5 = 2𝑅  𝑒𝑡 𝐶1 = 𝐶2 =
𝐶2

2
= 6             (VII.46-c) 

 

Donc, on aura enfin : 

 

                                                          𝑓 =
1

4𝜋𝑅𝐶
                                       (VII.46-b) 

 

 

 

 

 

 

 

On peut utiliser ce pont à la fois, 
pour mesurer les fréquences basses 
comme dar le cas du pont de Wien-
Robinson et les fréquences élevées 
jusqu’à la gamme des VHF. 

À l’équilibre, on peut facilement 
trouver les relations suivantes : 

 

 
Figure VII.31 : Pont en double T. 
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VII.6.3. Ponts résonant : 

 

 

                                                𝑓 =
1

2𝜋√𝐿𝐶
                                                   (VII.47) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Ce pont utilise un circuit R, L, C 
série, où l’équilibre est obtenu en 
agissant sur R1 et C (R1 est prise 
arbitrairement comme étant la 
résistance de réglage). 

Cependant, on peut à la place de 
R1 prendre indifféremment n’importe 
quelle autre résistance. 

À la résonance, on aura la relation 
classique, très connue, et souvent 
caractéristique des circuits 
résonants : 

 

 
Figure VII.32 : Pont résonant. 



 

Chapitre VIII 

 

VIII.1. LES CIRCUITS ÉLECTRIQUES RÉSONANTS : 

VIII.1.1. Définition de la résonance électrique : 

La résonance électrique est un phénomène physique fondamental, obtenu dans les 
circuits électriques contenant des condensateurs et des bobines sous certaines 
conditions de calibrages et de réglages. La résistance sera toujours présente, du fait 
que ces éléments, L et C ne soient jamais parfaits. 

Ainsi, dans toutes combinaisons d’éléments R, L et C, on peut atteindre la résonance 
lorsque les effets inductifs et les effets capacitifs s’annulent mutuellement. Le circuit 
équivalent résultant devient entièrement résistif et le facteur de puissance égale à 
l’unité. Cela veut dire que les réactances de la bobine et du condensateur sont 
exactement de magnitudes égales, de sorte que l'énergie électrique oscille entre le 
champ magnétique de la bobine et le champ électrique du condensateur. 

Dans certains circuits, la résonance électrique a lieu lorsque l'impédance entre 
l'entrée et la sortie du circuit se trouve près du zéro et la fonction de transfert au 
voisinage de l'unité. On la définit aussi par le fait de mettre la partie imaginaire de 
l’impédance complexe totale, ZT du circuit (ou même l’admittance totale du circuit, YT, 
selon le cas) égale à zéro. 

Dans la pratique, ce phénomène prend un caractère très important qui se justifie par 
sa large exploitation industrielle. On peut trouver par exemple, dans le spectre radio 
fréquentiel des signaux de transmissions désirables et indésirables qu’on peut 
sélectionner ou rejeter. Cette sélection et ce rejet se font grâce à des circuits résonants. 

 

VIII.1.2. Circuits RLC résonants : 

Les circuits RLC résonants sont composés, en général, de beaucoup de 
configurations possibles selon le nombre de composants qu’ils contiennent et de la 
disposition de ces composants dans le circuit. 

https://fr.wikipedia.org/wiki/R%C3%A9actance_(%C3%A9lectricit%C3%A9)
https://fr.wikipedia.org/wiki/Champ_%C3%A9lectrique
https://fr.wikipedia.org/wiki/Fonction_de_transfert
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Pour simplifier l’étude, nous allons considérer uniquement le cas des trois 
dispositions suivantes, intéressantes du point de vue pédagogique, à savoir le circuit 
RLC série, le circuit RLC parallèle et le circuit RLC série-parallèle. 

En effet, même élémentaires et simples, ces trois cas sont à la fois, simples et 
suffisant pour bien maîtriser les techniques de mesure à l’aide du Q-mètre et mieux 
comprendre les phénomènes physiques et électriques qui se produisent dans ces 
circuits juste à la fréquence de résonance. Ils présentent aussi un grand intérêt du point 
de vue théorique et pratique à la fois. 

Dans ces circuits, les grandeurs électriques étudiées (courant, tension, impédance, 
déphasage, etc...) sont toujours des fonctions où la variable est la fréquence (f). On 
peut aussi utiliser comme variable la pulsation (ω) ou une autre variable x , relative, 

définie par le rapport suivant : 
0


x , où 0  est la pulsation propre du circuit. Si, de 

plus on pose : 
RCR

L
Q

0

0 1




 , où Ԛ est le facteur de qualité de la bobine et de la 

capacité à la résonance, on voit apparaître un nouveau paramètre qui sera toujours 
présent dans les relations décrivant les grandeurs électriques que nous allons étudier. 

Ce facteur Ԛ, sera très déterminant dans toute l’étude qu’on va faire et présenter 
dans la suite de ce chapitre. 

Donc, ces fonctions qui ne sont en fait, que des réponses fréquentielles à des 
excitations aussi fréquentielles, peuvent, à travers le facteur de qualité Q, très bien 
caractériser le comportement électrique des éléments qui composent le circuit qu’on 
veut prendre en considération. 

 

VIII.1.2.1. Circuit résonant RLC série : 

 

                                     




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
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C
LjRXXjRZ CLT

1                                   (VIII.1) 

 
Figure VIII.1 : Circuit résonant RLC 

série. 

Ce circuit peut être constitué 
uniquement par une bobine d’inductance 
L et un condensateur de capacité C. 

La résistance sera toujours présente, 
du fait que ces éléments ne sont pas des 
composants idéaux. L’impédance totale 
ZT, d’un tel circuit est donnée par la 
relation suivante : 
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Nous pouvons, par l’étude du module de l’impédance totale |ZT(𝜔)| et de la phase 

φ(𝜔) à ses bornes, déterminer les caractéristiques électriques du circuit. On peut aussi 
suivre les variations du courant total (IT(𝜔)), de la tension totale (VT(𝜔)), ainsi que les 
tensions partielles aux bornes de chaque élément R, L et C du circuit. À la fréquence 
de résonance, certaines valeurs du facteur de qualité Q permettent de donner des 
réponses particulières très attractives pour des applications pratiques. 

 

VIII.1.2.1.1. Impédance du circuit ZT(ω) : 

Le module de l’impédance totale du circuit est donné par : 
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                                              (VIII.2) 

 

VIII.1.2.1.2. Intensité efficace du courant total IT(ω) : 

Si la source de tension fournit une tension efficace V0, l’intensité efficace parcourant 
le circuit RLC sera alors : 
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VIII.1.2.1.3. Déphasage φ(ω) du circuit : 

Ce déphasage est donne par la relation suivante : 

 

                                            

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                                                               (VIII.4) 

Si on pose : 

                                          
0


x          et         

RCR

L
Q

0

0 1




                                   (VIII.5) 

où 0  est la pulsation propre la résonance et Ԛ le facteur de qualité de la bobine et de 

la capacité à la résonance, les relations précédentes peuvent alors être écrites sous 
les formes suivantes : 
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                                                       
x

Q
xRxtg .1. 2                                                           (VIII.8) 

Dans toutes ces relations exprimées ci-dessus, il y a le parameter Q dont l’influence 
deviant de plus en plus importante quand on se trouve exactement à la resonance et 
sous certaines valeurs de la résistance R. 

 

                 
 

Figure VIII.2 : Variation de ZT en fonction de         Figure VIII.3 : variation de φ en fonction de 
la variable relative 𝑥 et du paramètre Q.                 la variable relative 𝑥 et du paramètre Q. 

 

On constate que le module de ZT décroit de l’infini à une valeur minimale au fur et à 

mesure que la fréquence relative 𝑥 augmente de 0 à 1. Au de-là de la fréquence de 

résonance qui correspond à 1x ,  l’impédance croit vert l’infini. Le courant total par 
contre, évoluera d’une façon inverse à celle de ZT. 

De même, on remarque que le degré d’amortissement des extremums à la 
fréquence de résonance indiquera l’importance de la valeur de la résistance ohmique 
du circuit. 

Les courbes de variation de l’angle de déphasage permettent de bien situer le 
comportement capacitif et le comportement inductif du circuit de part et d’autre de la 
fréquence de résonance ƒ0. 
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VIII.1.2.1.4. Coefficient de surtension Qv : 

On définit ce facteur, Qv comme étant le rapport entre la tension aux bornes de la 
bobine et la tension aux bornes du dipôle RLC. On l’appelle coefficient de surtension 
Qv pour ne pas le confondre avec le facteur de qualité Q. Si la résistance du dipôle 
RLC est faible, ce coefficient est égal au facteur de qualité défini pour la résonance en 

courant :                                                      
C

L

R
QQv

1
                                                           (VIII.9) 

En effet, on a vu que le maximum de tension aux bornes de la bobine n'est 
observable que si la résistance R du dipôle RLC est suffisamment petite. Il se produit 

pour une pulsation relative : 1
0





x , d'autant plus proche de 1, que la valeur de R 

est petite : 

                                                     1
2

1
2


L

CR
x                                                        (VIII.10) 

À cette fréquence, la tension aux bornes de la bobine est telle que : 
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                                   (VIII.11) 

Cette tension est, très voisine de Q quand la valeur de R est assez petite :
C

L
R

2


pour que la résonnance en tension soit bien observable. 

 

 

On voit quand on représente les 
variations de la fonction Qv(ω) que : 

- La forme de la courbe (I) de la 
(Figure VIII.4) ci-contre est obtenue 
en choisissant la condition suivante : 

c

L
R

22  . Alors, le maximum 

correspond au couple de valeurs 
(Qm, xm). 

- Par contre, si 
C

L
R

22  , Qv(ω) 

devient continument décroissante et 
le maximum n’existe pas (courbes II 
et III). 

 
Figure IV 4 : Variation du coefficient de 

surtension Qv en fonction de la pulsation 
ω. 
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De plus, pour une valeur de la pulsation ω voisine à celle qui correspond à la 
résonance, il peut exister entre deux points du circuit une tension très supérieure à la 
tension appliquée. Ce qui est représentée par les courbes (II) et (III) de la courbe de la 
(Figure VIII.4) vue précédemment. 

Pour cela, on doit faire attention aux risques de claquages, car on vient de le voir 
que la tension aux bornes de L ou C peut être 100 fois supérieure à la tension 
d’alimentation si le coefficient de surtension arrive à atteindre sa valeur maximale Qm. 

Aussi, à la résonance, on sait que le circuit devient purement résistif. Donc, la 

tension d’alimentation appliquée à ses bornes devient égale à : IRVT  . Par contre, 

les tensions aux bornes de L et C qui se compensent à chaque instant, mais elles ne 
sont pas nulles. Elles deviennent égales à : 
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Nous aurons alors : 

                                            Q
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L
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                                  (VIII.13) 

A ce moment-là, il est claire que : QQv   

 

VIII.1.2.2. Circuit résonant RLC parallèle : 

 

Dans le montage pratique, R représente alors la résistance de fuite du 
condensateur, qui est en général très grande, ce qui conduit à une faible valeur de YT 

Donc, l’admittance totale YT, d’un tel circuit est donnée par la relation suivante : 

 

 
Figure VIII-5 : Circuit résonant RLC 

parallèle. 

Ce circuit est appelé "anti-résonnant" 
ou "bouchon" parce que, quand la 
condition de résonance est vérifiée, son 
admittance YT est minimale, ce qui signifie 
que l'intensité du courant total dans le 
diviseur de courant est minimale. Le 
courant et la tension sont alors en phase. 
Une application est l'élimination, dans un 
signal composite, d'une fréquence 
particulière. 
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Nous pouvons voir qu’il existe une certaine similitude, entre l’étude du circuit RLC 
série et RLC parallèle en passant d’un circuit tension en un circuit courant et de 
travailler avec les admittances passer à la place des impédances. 

Ainsi, l’étude du module de |YT| et de la phase φ de YT peuvent aisément déterminer 
les caractéristiques électriques de ce circuit. 

Cependant, on peut aussi suivre les variations de la tension V(𝜔) et du courant IT(𝜔) 
totale, ainsi que les courants qui circulent dans chaque élément du circuit. 

 

VIII.1.2.2.1. Admittance du circuit YT(ω) : 

Le module de l’impédance totale du circuit est donné par : 
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VIII.1.2.2.2. Valeur efficace de la tension : 

Si la source de tension fournit au circuit une tension efficace V0, cette tension va se 
retrouver aux bornes de chaque élément. Elle sera alors donnée par : 
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VIII.1.2.2.3. Déphasage φ(ω) du circuit : 

Ce déphasage est donne par la relation suivante : 
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Si, à nouveau, on pose : 
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où 0  est la pulsation propre la résonance et Ԛ le facteur de qualité de la bobine et de 

la capacité à la résonance, les relations précédentes peuvent alors être écrites sous 
les formes suivantes : 
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Figure VIII.6 : Variation de ZT en fonction de 𝑥      Figure VIII.7 : variation de φ en fonction de 𝑥 

 

On constate que le module de ZT croit d’une valeur minimale très petite à une valeur 

maximale très grande au fur et à mesure que la fréquence relative 𝑥 augmente de 0 à 

1. Au de-là de la fréquence de résonance qui correspond à 1x ,  l’impédance décroit 
de façon dissymétrique. Le courant total par contre, évoluera d’une façon inverse à 
celle de ZT. 

De même, on remarque que le degré d’amortissement des extremums à la 
fréquence de résonance indiquera l’importance de la valeur de la résistance ohmique 
du circuit. 
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Les courbes de variation de l’angle de déphasage permettent de bien situer le 
comportement capacitif et le comportement inductif du circuit de part et d’autre de la 
fréquence de résonance ƒ0. 

En effet, l’angle de déphasage 𝜑 du courant par rapport à la tension VT  sera exprimé 
aussi par : 
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Les variations de la phase φ et de l’impédance de ZT en fonction de la pulsation ω 
sont montrées sur les (Figures VIII.7 et VIII.8) ci-dessous. 

 Si 𝜔 → 0, alors 𝑍 → 0 donc 𝑡𝑔𝜑 → 0 et par conséquent 𝜑 → +𝜋/2 

  Si 𝜔 → ∞, alors 𝑍 → 0 donc 𝑡𝑔𝜑 → − ∞ et par conséquent 𝜑 → −𝜋/2 

 Si 𝜔 → 𝜔, alors 𝑍 → 𝑅 donc 𝑡𝑔𝜑 → 0 et par conséquent 𝜑 → 0 

                                

Figure VIII.8 : Représentation de Fresnel des                Figure VII.9 : Variations ZT(ω) et φ(ω) 
  courants partiels d’un circuit RLC parallèle                           d’un circuit RLC parallèle  

 

VIII.1.2.2.4. Coefficient de surintensité Qi : 

Le coefficient de surintensité d'un circuit RLC en parallèle, symbolisé par Qi, se 
calcule par l'équation suivante : 
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Si on prend le courant IL qui passe dans la bobine L, on aura la relation suivante : 
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Dont le module est : 
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Qi sera maximal si : 
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À la résonance, Z = R, les courants dans l’inductance et le condensateur sont 
identiques mais apposés, ces éléments sont tour à tour donneurs et récepteurs 
d’énergie, on peut donc dire que le courant total circulant dans le circuit est : I = U/R. 

 

VIII.1.2.3. Circuit résonant RLC série-parallèle : 
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À la résonance la partie imaginaire devient nulle, on aura alors : 
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On voit donc que la fréquence de résonance du circuit est différente de celle de la 

fréquence propre (généralement inférieur), donc : CLsr 10  , typique d’un circuit 

RLC série ou RLC parallèle. 

 
Fig. VIII-9 : Circuit résonant RLC série-

parallèle où le condensateur C est 
supposé sans perte. 

Ce type de circuits est obtenu par 
association de bobines et de 
condensateurs réels. La bobine sera 
représentée par son schéma équivalent 
série (Ls, r). Si on admet que les pertes 
(ou fuites) d’un "bon condensateur" sont 
négligeables devant celles d’une bobine, 
la configuration électrique d’un circuit 
RLC série-parallèle réel sera représenté 
par la (Figue VIII.8). 

Pour déterminer ses caractéristiques à 
la résonance, la méthode la plus simple 
est d’utiliser son admittance, soit : 
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Dans la pratique, il est d’usage d’utiliser la règle suivante : 

Si, le facteur Q de la bobine, à la fréquence de résonance, est supérieur ou égale à 
dix ( 10Q ), on peut alors admettre que l’effet de la résistance r sur la fréquence de 

résonance est négligeable. Donc, on aura à la limite : 0 r . 
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Les variations de la fonction Qi(ω) sont identiques à celles de Qv(ω) représentées 
sur la (Figure VIII.4) correspondant au coefficient de surtesion. 

- La forme de la courbe (I) de la (Figure VIII.4) ci-contre est obtenue en choisissant 

la condition suivante : 
C

L
R

2

2  . Alors, le maximum correspond au couple de valeurs 

(Qm, xm). 

- Par contre, si 
C

L
R

22  , Qi(ω) devient continument décroissante et le maximum 

n’existe pas (courbes II et III). 

 

VIII.2. LES TECHNIQUES DE MESURE DU Q-MÈTRE APPLIQUÉES À LA 
MÉTHODE DE RÉSONANCE : 

 

VIII.2.1. Applications de la méthode de résonance : 

La résonance est exploitée dans diverses techniques de mesure souvent choisie 
pour les meilleures performances de précisions, de la souplesse et la disponibilité 
qu’elle procure. 

 
Fig. VIII-10 : Circuit RLC série-parallèle 

où C est supposée avec perte. 

Si, par contre, dans le cas où les pertes 
dans le condensateur ne sont pas 
négligeables, on doit tenir compte de la 
résistance de fuite représentée ici par R 
en série avec C. 

La fréquence de résonance du circuit 
de la (Figure VIII.10) sera donnée par la 
relation suivante : 
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Principalement, on utilise cette méthode pour développer tout une série de mesures 
de grandeurs physiques, électriques et électroniques comme on va l’étudier et le voir 
dans ce qui suit. 

 

VIII.2.2. Les techniques du Q-mètre : 

Comme très souvent les inductances sont imparfaites, donc, ils doivent avoir une 
certaine résistance, même faible entre ses bornes. Le rapport entre la réactance 
inductive et la résistance effective est appelé le facteur de qualité comme on l’a vu juste 
précédemment. 
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Mais, quand la valeur de Q est la plus élevée, elle est la mieux souhaitée. Quant à 
une faible valeur de Q indique bien que la résistance est grande et par conséquent une 
perte d’énergie considérable. 

Comme la valeur, en continu, de la résistance effective d’une inductance diffère de 
celle qu’on obtient, en alternatif, à cause des courants de Foucault et des effets de 
peau, et varie d’une manière hautement complexe quand la fréquence varie. 

Pour cela, Q est rarement calculé par la détermination de R et L. 

Parmi les méthodes possibles pour la détermination de Q, on trouve celles des ponts 
de mesure qu’on a vu aussi au chapitre VII précédent. Seulement, quand les valeurs 
de Q sont trop élevées, la précision des ponts devient faible. Pour cette raison, 
l’obligation d’avoir des valeurs précises de Q a bien nécessité d’utiliser des Q-mètres. 

Le Q-mètre est un instrument désigné pour les mesures du facteur de qualité Q des 
bobines comme aussi pour mesurer les propriétés électriques des bobines et des 
condensateurs. 

Ainsi, le Q-mètre est un appareil destiné principalement à mesurer la réactance et 
le facteur de qualité d'impédance inductive (de 5 à 1000). La qualité d'un tel appareil 
dépend de sa capacité de pouvoir détecter les petites variations de Q qui peuvent 
résulter des paramètres à mesurer. 

Il permet aussi, de développer toute une série de mesure à partir de la détermination 
de résistance, réactance ou le facteur de qualité des condensateurs et d'inductances 
en haute fréquence. On peut, par exemple, mesurer le facteur de dissipation, le 
constant diélectrique des matériaux isolants et le coefficient de couplage, l’inductance 
mutuelle et la fréquence caractéristique des transformateurs. 
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VIII.2.2.1. Principe du Q-mètre : 

 

 

 

 

 

 

 

 

Comme la fonction principale du Q-mètre est la mesure de l’inductance propre de la 
bobine L et de son coefficient de qualité Q pour qu’on puisse finalement calculer la 
partie résistive r de cette même bobine, on doit, pour réaliser cela, se munir d’une 
bobine étalon et d’une la fréquence de travail très précise. Et à partir de là, on peut à 
la limite mesurer n’importe quelle autre impédance que ce soit inductive ou capacitive 
selon la nature du composant à utiliser. 

Donc, de la mesure des deux tensions e, aux bornes de l’oscillateur d’une part, et 
E, aux bornes du condensateur d’autre part, on peut déduire le facteur de qualité défini 
par le rapport : 
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Pour assurer une très bonne qualité en précision de l’appareil, on doit imposer une 
très faible résistance interne à la source de tension e (l’oscillateur) et une très forte 
résistance interne du Q-voltmètre. Elle est d'autant meilleure que Q est élevé. Elle se 
dégrade franchement pour des Q inférieurs à la dizaine. 

 

VIII.2.2.2. Structure électronique de l’appareil : 

La structure interne de l’appareil est schématisée par un diagramme de bloc qui 
représente son schéma synoptique donné par la (Figure VIII.11). Il comprend trois 
grandes parties décrites comme suit : 

 

Figure VIII.11 : Schéma de principe 
d’un Q-mètre. 

Le Q-mètre est constitué d’un 
oscillateur à fréquence variable 
exigeant une très grande stabilité. Il 
débite un courant I dans une 
inductance variable. Un voltmètre E à 
amplificateur électronique (appelé 
aussi Q-voltmètre) est placé aux 
bornes du condensateur pour 
permettre d’indiquer si, la résonance 
est atteinte. 
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- La partie I : Cette partie est constituée d’un oscillateur, qui, permet de couvrir une 
gamme de fréquence allant de 22 KHz à 70 MHz, a pour rôle de fournir des signaux 
dont le niveau est constamment contrôlé par une boucle de commande automatique 
verrouillée. Cette boucle asservie est constituée d’une détection et d’un système 
d’amplification ALC. Le niveau de référence est donné par une tension continue 
constante. La comparaison est effectuée par rapport à celle-ci du niveau des signaux 
de sortie générés par l’oscillateur. 

On applique ces signaux à un étage d’adaptation d’impédance (convertisseur 
d’impédance) qui doit en fixer une gamme d’impédance de telle sorte qu’elle soit en 
accord avec la gamme de mesure du facteur de qualité Q. 

- La partie II : À la sortie du premier étage, le signal est ensuite injecté dans le circuit 
résonant par l’intermédiaire d’un transformateur incorporé. La résonance est enfin mise 
en évidence par un simple ajustage de condensateur variable (C et ∆C pour le gros et 
le fin réglage respectivement). 

- La partie III : Cette partie permet de contrôler la qualité du signal issue de la 
deuxième partie. Le niveau de résonance est alors directement traduit par une 
déviation de l’aiguille du Q-voltmètre sur une échelle graduée de façon appropriée. 

Ainsi, le résultat de la mesure peut être lu sur un système d’affichage associé. 

 

 
Figure VIII.12 : Schéma synoptique simplifié d’un Q-mètre de marque H.P.4342 A. 
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VIII.2.2.3. Modes de connexions de l’échantillon à mesurer : 

 

Pour effectuer une mesure, on doit savoir que : 

Les bornes n°1 et n°2 sont destinées à recevoir l’inductance (que ce soit inconnue 
ou de référence) pour constituer le circuit résonant nécessaire à la réalisation du 
phénomène de résonance qu’on doit exploiter pour faire la mesure. 

Les bornes n°5 et n°4 sont utilisées pour connecter les impédances inconnues en 
un montage parallèle correspondant à une méthode de mesure dite "méthode 
parallèle". 

Car, en effet, il existe trois méthodes de base de connexion du dipôle inconnu à 
l’appareil de mesure. 

1- Mode de connexion direct, 

2- Mode de connexion parallèle, et 

3- Mode de connexion série. 

Le choix de la méthode à utiliser ne sera dicté que par un certain nombre de facteurs, 
qui sont par exemple : 

-i) Les caractéristiques du dipôle inconnus, 

-ii) les paramètres à mesurer, et 

-iii) de la fréquence de mesure. 

 

 
Figure VIII.13 : Les six bornes de 

connexions susceptibles de recevoir les 
grandeurs à mesurer. 

L’appareil possède (06) bornes 
destinées à être utilisées pour les 
diverses possibilités de connexions 
du dipôle inconnu et d’autres 
accessoires de référence (voir Figure 
VIII.13 ci-contre). 

L’oscillateur est connecté entre les 
bornes 1 et la masse (borne n°4). Le 
condensateur variable en parallèle 
avec le Q-mètre entre les bornes n°5 
et n°4. Les sorties n°3 et n°6 sont 
reliées au châssis de l’appareil pour 
des raisons de protection. Donc, à la 
masse au même potentiel que le 
point n°4. 
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VIII.2.2.3.1. Mode de connexion direct : 

 

Car, à chaque fois, elles doivent satisfaire la relation mathématique : 
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Donc, ces considérations conduisent à mettre en évidence des gammes limites de 
mesure quand  on utilise ce mode de connexion avec l'appareil seul (sans utilisation 
d'autres équipements supplémentaires).Ce qui nécessite d'utiliser d'autres méthodes 
de connexion dites "méthode de mesure série" ou "méthode de mesure parallèle". 

 

VIII.2.2.3.2. Mode de connexion parallèle : 

Quand on utilise ce mode de 
connexion les indications de 
l'appareil permettent seulement de 
trouver le facteur de qualité Q, 
l'inductance équivalente L, la 
résistance série rs et la capacité 
répartie Cd d’une bobine. 

Ainsi, la gamme de mesure 
couverte par Q et L est indépendante 
de la valeur de l’inductance et de la 
fréquence de mesure. 

 
Figure VIII.14 : Mode de connexion dit 

"Direct". 

Ce mode de connexion est 
préférable pour la mesure des hautes 
impédances, c'est à dire les 
inductances fortes, les résistances 
fortes et les capacités faibles. 

La mesure est faite par la méthode 
de substitution. Cette méthode 
consiste à faire résonner une 
inductance L0 connue, choisie parmi 
un lot fourni par le constructeur avec 
le Q-mètre, successivement en deux 

 
Figure VIII.15 : Mode de connexion dit 

"parallèle". 
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étapes complémentaires : 

1- En l'absence du dipôle Z d’abord. 

2- Et ensuite, en présence du dipôle Z. 

Le choix de l'inductance de référence L0, compte tenu des caractéristiques du 
condensateur variable de l'appareil, est fixé par la fréquence de mesure utilisée. 

 

VIII.2.2.3.3. Mode de connexion série : 

 

VIII.2.3. Opérations théoriques : 

Comme on cherche toujours à réaliser d'une bobine ou d'un condensateur un 
élément très réactif, la résistance interne qu'il présente entre ses bornes doit être la 
plus faible possible devant la réactance. 

Donc, le facteur de qualité, qui est le quotient de la réactance par la résistance, 
caractérise en effet, l'approximation avec laquelle on peut considérer ces éléments 
comme purement réactifs. 

 

VIII.2.3.1. Facteur de qualité d'un dipôle : 

VIII.2.3.1.1. Cas d'une bobine : 

 

 

                                                      

Ce mode connexion est pratique 
pour la mesure des faibles 
impédances telles que les faibles 
inductances, les faibles résistances 
et les fortes capacités. Ici également, 
on utilise la méthode de substitution 
pour réaliser les mesures. 

Cette méthode consiste à réaliser 
la résonance à l'aide d'une 
inductance L0 connue, avec la 
capacité variable de l'appareil, 
successivement en l'absence puis en 
présence du dipôle Z. 

 

 

 
Figure VIII.16 : Mode de connexion dit 

"série". 

L'impédance de la bobine s'écrit : 
jXrZ   et le facteur de qualité Q 

devient : 
 

Figure VIII.17 : Schéma équivalent 
série d’une bobine réelle. 



138                                                                                                                Chapitre VIII 
 

 

                                                             
r

X
Q                                                                (VIII.28) 

 

                                                           jX
r

X
Z                                                         (VIII.29) 

 

L'ordre de grandeur de Q pour une bobine réelle à une pulsation pas trop basse est 
de l'ordre de 100 à 300. 

 

VIII.2.3.1.2. Cas d'un condensateur : 

Pour un condensateur, on peut utiliser l'un ou l'autre des deux schémas équivalents 
suivants : Schéma équivalent série (S.E.S) ou schéma équivalent parallèle (S.E.P) tel 
qu’on la vu au chapitre VII, § VII.3.1. 

 

 

 

 
 

Figure VIII.18 : Schéma équivalent 
série d’un condensateur réel. 
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Figure VIII.19 : Schéma équivalent 
parallèle d’un condensateur réel. 
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VIII.2.3.1.3. Facteur de qualité de deux dipôles en série : 

 

 

 

 

 

 

 

 

 

L’impédance totale s’écrira alors : 

                                                                  2121 XXjrrZT                           (VIII.30) 

À la résonance nous aurons : 

                                          2121 00 XXXXZT                                  (VIII.31) 

 

Et comme 21 rrr  , donc : 

                                             







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1

2
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1 11
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X
r                                       (VIII.32) 

 

Alors : 

                                                    









211

111

QQQX

r
                                                (VIII.32) 

 

D’où : 

                                                           









21

111

QQQ
                                                  (VIII.33) 

 

𝒁𝑻 = 𝒁𝟏   + 𝒁𝟐   → 𝑸𝑻            

 𝒁𝟏 = 𝒓𝟏 +  𝒋𝑿𝟏   → 𝑸𝟏 = 
|𝑿𝟏|

𝒓𝟏
        

  𝒁𝟐 = 𝒓𝟐 + 𝒋𝑿𝟐 → 𝑸𝟐 =
|𝑿𝟐|

𝒓𝟐
 

'impédance totale s'écrira alors :  

 

TT QZZZ                     21
 

 

1

1

1111
r

X
QjXrZ                      

2

2

2222
r

X
QjXrZ                      

 
Figure VIII.20 : Association de deux 

dipôles en série. 
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VIII.2.4. Facteur de qualité d’une forte impédance : 

 

 

 

 

 

 

 

 

À la résonance, on peut écrire la relation : 

                                            
0111

01
1

2

011

1
1






CQQ

L
rCL          et                     (VIII.34) 

** K, fermé : 

L’impédance du dipôle en parallèle avec le condensateur sera alors donnée par : 

    
   22

2

2

2
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
                   (VIII.35) 

Et comme par hypothèse Z’ est supposée être une impédance de très forte valeur, 

donc à priori on a :  22

2 CBG  . 
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                     (VIII.36) 

L’impédance totale du circuit sera alors : 
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À la résonance on a : 

  
 





 212

2

2

2
1 00 CBC

CBG

CB
LZT 












   :donc        :alors                    (VIII.38) 

D’où : 

 

Pour cela, on utilise le montage 
parallèle et on effectue les deux 
opérations suivantes : 

* K, ouvert : 

On obtient la résonance avec une 
valeur C1 du condensateur variable 
et L1 d’une bobine de calibrage 
fournie.  

Figure VIII.21 : Mode de connexion dit 
"parallèle". 
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                                                         21 CCB                                                         (VIII.39) 

Le facteur de qualité correspondant à cette deuxième opération sera alors : 
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Donc : 

                                                                               
 


21

21
1

.QQ

QQ
CG


                                             (VIII.41) 

ou :                                                                                                  21 QQQ                                                  (VIII.42) 

Le facteur de qualité du dipôle inconnu est calculé à partir de la relation : 

                                                                  
 

1

2121
1

.

..

CQ

QQCC
C

G

B
Q




                                        (VIII.42) 

 

VIII.2.5. Facteur de qualité d’une faible impédance : 

 

** K, fermé : 

Si, l’impédance Z du dipôle inconnu est de la forme : XjrZ  , alors celle du 

circuit sera décrite par : 

 

Dans ce cas nous avons vu que le 
montage qui convient est le montage 
série. 

De manière analogue à celle du 
montage précédent, on effectue les deux 
opérations suivantes : 

* K, ouvert : 

À la résonance, on aura la relation 
suivante : 

0111

01
1

2

011

1
1






CQQ

L
rCL    et      (VIII.34) 

 
Figure VIII.22 : Mode de connexion dit 

"série". 
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                                             jXr
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À la résonance on aura : 
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D’où : 
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Le facteur de qualité du circuit Q2 est donné par la relation : 

                                      2
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Donc : 
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Le facteur de qualité du dipôle inconnu est calculé à partir de la relation : 
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VIII.2.6. Mesures et applications : 

VIII.2.6.1. Mesures d’une forte inductance L : 

Avec le Q-mètre, on peut relever les valeurs mesurables des grandeurs suivantes : 
C1, C2, ω, Q1 et Q2 en effectuant les diverses opérations de mesures. Avec l’ensemble 
de ces éléments tirés de la mesure on arrive à déterminer les valeurs de l’inductance 
L, le facteur de qualité Q, la résistance équivalente parallèle Rp et la conductance 
équivalente parallèle Ga d’une bobine inconnue en se servant des relations suivantes : 

                                                                     
  2

12

1

CC
L


      en [H]                                         (VIII.48) 
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1
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1

21

CQ

QQ
Rp


                     en [Ω]                                         (VIII.50) 

 

Dans le cas où (C2 < C1), une capacité apparente apparaît aux hautes fréquences 
supérieures à la fréquence de résonance propre de la bobine f0. Cette capacité 

apparente sera donnée par :  12 CCCa  , ce qui permet de déduire la conductance 

équivalente parallèle donnée par : 

                                                           .
.

.

21
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QQ

CQ
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
                                                     (VIII.51) 

 

VIII.2.6.2. Influence de la capacité répartie sur la mesure des paramètres d’une 
bobine : 
 

Une bobine possède en général, une capacité répartie Cd (Figure VIII.23). Sa 
fréquence propre de résonance (appelée aussi auto-résonance) f0 est déterminée 

uniquement par L0 et Cd. Si, on considère les facteurs de qualités mesurés par 
l’appareil Q1 et Q2 en l’absence et en présence de la capacité répartie respectivement, 
ces deux grandeurs sont reliées entre elles par un facteur de correction qui est fonction 
des deux capacités variable et répartie (C et Cd) : 

 

 

 
Figure VIII.23 : Méthode de mesure de la capacité répartie Cd dans les inductances. 
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En effet, la présence de la capacité répartie dans une bobine affecte sérieusement 
l’indication de l’appareil et les mesures de fréquence. 

En B.F, l’impédance de la capacité répartie Cd est tellement forte que son effet 
devient négligeable sur le circuit résonant. Dans ce cas, les grandeurs déduites des 
indications de l’appareil sont l’inductance L0, la résistance série r0 et le facteur de 

qualité 
0

0

r

L
Q


 . 

En H.F, par contre, la bobine avec Cd, développe une résonance parallèle propre. 
Or, l’impédance du circuit au voisinage de cette fréquence de résonance augmente 
considérablement. Ainsi, les valeurs d’inductance L0, et de la résistance série r0 
mesurées par l’appareil seraient supérieures à leurs valeurs réelles, et par conséquent, 
les valeurs de Q seraient sous évaluées. Cd est exprimée par la relation suivante : 
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Où C1 est la capacité du condensateur variable qui a permet de réaliser la résonance 
série de fréquence f1. 

Si, on prend le cas où : f0 >> f1, alors, Cd sera donnée par : 
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Cd 
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




                                                          (VIII.54) 

Dans la pratique, on utilise une méthode approximative pour mesurer les capacités 
réparties des bobines dont la valeur est supérieure ou égale 10 pF. On procède comme 
suit :  

On fixe C1, la capacité du condensateur variable, et on cherche la résonance en 
faisant varier la fréquence f. Soit f1, cette fréquence de résonance. Ensuite, on choisit 

arbitrairement une fréquence 
n

f
f 2
1   où n est une entier naturel (n=1, 2,….) et on 

cherche à nouveau la résonance en faisant varier la capacité du condensateur variable 
C. Soit C2 la valeur qui réalise cette résonance. Cd est alors donnée par la relation 
suivante : 
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Où : 
2

1

f

f
n  . 

Si de plus on pose : 
2

1
2

f
f   on aura : 

Dans ce cas l’incertitude sur pFCd 2  

Le facteur de correction est alors exprimé par : 
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D’où on tire : 
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La forme des courbes suivantes (Figure VIII.24 et 25) permettent d’indiquer les 
variations typiques des valeurs effectives de Q et L en fonction de la fréquence et du 
réseau de courbes de correction de la capacité répartie Cd. 

Remarque : 

Dans le cas des mesures d’inductances, on doit faire attention aux valeurs 
d’inductances résiduelles. La valeur mesurée Lm sera alors donnée par : 

               
Figure VIII.24 et 25 : Méthode de mesure de la capacité répartie Cd dans les 

inductances. 
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                                                          resim LLL                                                         (VIII.58) 

( resL  résiduel d’un appareil de type HP 4342-A est de l’ordre de 0.01 µH). 

 

VIII.2.6.2.1. Mesure de qualité d’une faible capacité < 450 pF : 

Une capacité de faible valeur correspond à un dipôle de forte impédance, c’est 
pourquoi on utilise la méthode de mesure parallèle. Le processus de mesure est réalisé 
comme suit : 

i) On tout d’abord commencer par choisir une inductance étalonnée qu’on doit placer 
en série avec le condensateur variable (C.V) de l’appareil et on cherche la résonance. 
On note le couple de valeur obtenu dans ce cas (C1 et Q1) et qui correspond à la 
première étape. 

ii) On place ensuite la capacité inconnue avec le condensateur variable (C.V) et on 
cherche à nouveau la résonance, ce qui permet d’obtenir le couple (C2 et Q2). 

Alors, la valeur de la capacité inconnue sera donnée par : 

                                                           
21 CCCp                                                         (VIII.59) 

Le facteur de qualité Q par : 
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Où :  21 QQQ  , et la résistance parallèle Rp sera donnée par : 
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VIII.2.6.2.2. Mesure des fortes résistances : 

On utilise la même méthode que celle exposée au paragraphe précédent 
(VIII.2.6.2.1). Les relations suivantes permettent de déterminer les grandeurs à 
mesurer : 

- 


1
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21

CQ
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
 , si le dipôle est réactif. 
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De plus, si (C2 > C1), il devient capacitif de capacite : 

                                                           
21 CCCp                                                         (VIII.59) 

et si, (C2 < C1), il devient inductif d’inductance : 

                                                       
 12

1

CC
L


                                                        (VIII.62) 

 

VIII.2.6.2.3. Mesure de la constante diélectrique d’un isolant : 

La constante diélectrique d’un matériau isolant r .0  est calculée à partir de la 

mesure capacité. Cette capacité est mesurée en plaçant ce matériau isolant entre une 
paire d`électrodes de dimensions connues avec précision. Pour réaliser cela, on doit 
associer avec le Q-mètre un adaptateur de test diélectrique. Il est constitué d’une paire 
d’électrodes de précision en forme de micromètre dont l’épaisseur Tx inter-électrode 
est variable. Leur diamètre est choisi de telle façon à simplifier les calculs associés aux 
mesures. 

Car, il est connu que, la capacité d’un tel dispositif est donnée par : 

                                                       
00
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...6,3.10..36
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s
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 [en pF]                 (VIII.63) 

Donc, si on choisit le diamètre des électrodes (comme égale à 38 mm pour un HP 

4342-A par exemple), la capacité C sera alors exprimée en 
0

1

T
C   (pF) où T0 est 

l’épaisseur du diélectrique (matériau isolant). 

 

Exemple : 

À titre d’indication, voici les caractéristiques d’un type d’adaptateur associé au Q-
mètre pour la mesure des constantes diélectriques. 

- Diamètre des électrodes : 380   mm, 

- Espacement inter-électrodes : 10  à  0xT  mm (résolution 0.02 mm), 

- Paramètres résiduels : 5C  pF ; 40L  mH. 

- Le minimum mesurable du facteur de dissipation : 410.1  tgD . 
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Pour déterminer la constante diélectrique, on utilise la méthode de mesure qui 
consiste à réaliser les étapes suivantes : 

Première étape: Le Q-mètre seul, muni d’une bobine d’étalonnage permet de 

donner à la résonance un couple de valeurs (𝑪𝟏 et 𝑸𝟏). 

Deuxième étape : Le Q-mètre, en parallèle avec l’adaptateur à vide permet de 

donner (𝑪𝟐 et 𝑸𝟐). 

La distance inter-électrode 𝑻𝒙 doit ètre réglée égale à l’épaisseur de l’échantillon. 

Troisième étape : Le Q-mètre, en parallèle avec l’adaptateur à charge conduit à 

déterminer (𝑪𝟑 et 𝑸𝟑). 

Quatrième étape : On retire l’échantillon et on fait varier soit l’épaisseur 𝑻𝒙 en 
maintenant constante la capacité du condensateur variable (C.V.) jusqu’à l’obtention 

de l’épaisseur 𝑻𝟎 qui réalise la résonance, soit on fait varier la capacité du (C.V.) en 
gardant 𝑻𝒙 égale à l’épaisseur de l’échantillon. 

On déduit : 

- soit (𝑻𝟎 et 𝑸𝟒). 

- soit ( 𝑪𝟒 et 𝑸𝟒). 

 

Alors, la capacité inductive spécifique de l’échantillon est donnée par : 

                                                       
0T

Tx
r                                                         (VIII.63) 

 

La constante diélectrique sera égale à : 

                                        12

0

0 10.855,8.. 
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La capacité de l’échantillon tenu entre les électrodes st donnée par : 

                                                
x

x
T
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C
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Aussi, la conductance équivalente parallèle 𝑮𝒙 de l’échantillon peut être déduite par : 
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où : (  32 QQQ  ). 

 

Le facteur de dissipation D est donné par : 
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et :   11   tgDQx . 

 

VIII.2.6.2.4. Mesure des faibles inductances : 

Comme pour le cas des faibles résistances et des fortes capacités, on utilise le 
montage de mesure série. Ensuite, on procède de la même façon que le processus 
décrit aux paragraphes précédents. Les grandeurs à déterminer sont alors données 
par les expressions suivantes : 
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VIII.2.6.2.5. Mesure de forte capacité > 450 pF : 

L’essentiel des résultats de mesure concernant ce cas sont résumés dans ce qui 
suit : 

                                                           
21

21

CC

CC
Cs


                                               (VIII.71) 
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 

2211

2121

QCQC

CCQQ
Q




                                             (VIII.72) 

 

                                                           
2121

1122

QQCC

QCQC
rs


                                               (VIII.73) 

 

VIII.2.6.2.6. Mesure des faibles résistances : 

Dans ce cas, les présentes grandeurs mesurées sont exprimées par les relations 
suivantes : 

 

                                                           
2121

1122

QQCC

QCQC
rs


                                               (VIII.74) 

 

Si, le dipôle est purement résistif, donc : C1 = C2, alors : 

 

                                                                
211 QQC

Q
r


                                                 (VIII.75) 

 

Avec :  21 QQQ  . 

 

Si, le dipôle est réactif, alors sa réactance devient : 

 

                                                           
 

2

21

21

CC

CC
Ls


                                               (VIII.68) 
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VIII.2.6.2.7. Tableau récapitulatif : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mesure en série Mesure en parallèle 

Le facteur de qualité effectif : 

Q = 
𝑸𝟏𝑸𝟐 ( 𝑪𝟏− 𝑪𝟐 )

𝑪𝟏𝑸𝟏− 𝑪𝟐𝑸𝟐
 

Le facteur de qualité effectif : 

Q = 
𝑸𝟏𝑸𝟐 ( 𝑪𝟐− 𝑪𝟏 )

∆𝑸𝑪𝟏
 

La résistance effective série : 

𝒓𝒔 = 
𝑪𝟏𝑸𝟏 − 𝑪𝟐𝑸𝟐

𝑪𝟏𝑪𝟐𝑸𝟏𝑸𝟐𝝎
 

La résistance effective parallèle : 

𝑹𝒑 = 
𝑸𝟏𝑸𝟐

∆𝑸𝑪𝟏
 
𝟏

𝝎
 

 
La réactance effective série : 

 

𝑿𝒔 = 
( 𝑪𝟏 − 𝑪𝟐 )

𝑪𝟏𝑪𝟐𝝎
 

 
La réactance effective parallèle : 

 

𝑿𝒑 = 
𝟏

( 𝑪𝟐 − 𝑪𝟏 )𝝎
 

 
L’inductance effective série : 

 

𝑳𝒔= 
𝑪𝟏− 𝑪𝟐

 𝑪𝟏 𝑪𝟐𝝎𝟐 

 
L’inductance effective parallèle : 

 

L= 
𝟏

( 𝑪𝟐− 𝑪𝟏 )𝝎𝟐 

 
La capacité effective série : 

 

𝑪𝒔 = 
𝑪𝟏𝑪𝟐

𝑪𝟐 − 𝑪𝟐
 

 
La capacité effective parallèle : 

 
𝑪𝒑 = 𝑪𝟏 − 𝑪𝟐 
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Chapitre IX 

 

IX.1. NOTION DE GRANDEURS MAGNÉTIQUES : 

La grandeur magnétique la plus importante mesurable est le flux d’induction 
magnétique : sB. , ou celle qui en dérive directement, telle que l’induction 

magnétique sB /  ou l’inductance propre IL / . Les mesures sont déduites de 

ces dernières à l’aide des relations classiques connues. 

De façon générale, le magnétisme qui caractérise les forces qui interagissent entre 

courants, aimants ou électroaimants sont directement liées à l’induction magnétique B


 
qui représente un pouvoir de force issu de l’excitation magnétique. Selon les milieux, 
cette force peut être exprimée par : 

* Bvqf


 .           pour une charge q animée d’une vitesse v


. 

** BlIdf


        pour un élément de courant du circuit qui subit l’action. 

*** Bvqf


 .      pour un élément de matière aimantée de moment magnétique m


. 

De même, l’induction magnétique B


 peut à son tour se mettre sous la forme d’un 

produit de deux facteurs ( HB


. ), où   est la perméabilité qui concerne le milieu où 

l’action s’exerce et H


 le champ magnétique exprimé en [A/m]. 

En fait, ce dernier paramètre ne représente pas une grandeur physique, mais un 
intermédiaire de calcul, car on ne mesure pas un champ magnétique puisqu’il y a 
nécessairement un milieu dont il dépend. Donc, on le calcule à partir d’autres 
grandeurs qui, elles ont été mesurées et qui représentent une réalité physique. Le flux 
magnétique exprimé en Weber est défini comme étant le résultat des action subit par 

une spire de surface s


placée normalement aux lignes d’induction magnétique B


. Pour 

n spires le flux total sera exprimé par la relation : 

 

                                                                nBs                                                                (IX.1) 
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IX.2. DÉFINITIONS DES GRANDEURS MAGNÉTIQUES : 

IX.2.1. Excitation magnétique H


 : 

L’excitation magnétique appelée aussi champ magnétique représente en fait un 
concept mathématique abstrait qui définit le magnétisme. Son unité est l’Ampère tour 
par mètre. 

 

IX.2.2. Induction magnétique B


 : 

Elle représente un pouvoir des forces issues de l’excitation magnétique et qui 
dépend aussi du milieu. Son unité est le Tesla ou le Weber par mètre carré. 

 

Remarque importante : 

On sait que : 

                                                           HB r


0                                                                (IX.2) 

Ce qui veut dire que B


 et H


 sont des vecteurs colinéaires et tangents à la même 

ligne de champ. Cette propriété ne sera pas vérifiée si B


 et H


 sont des grandeurs 

sinusoïdales du temps. Dans ce dernier cas B


 et H


 seront alors déphasés d’un petit 
angle à cause de l’hystérisis. 

Il faut noter aussi que les propriétés de B


 et H


 sont suffisamment différentes même 
s’ils ont les mêmes lignes du champ. 

Alors que B


 jouit d’un flux conservatif, H


 n’a pas cette propriété. Par exemple, dans 

un entrefer H


 peut subir des variations brutales alors que B


 reste continu dans tout le 
circuit magnétique. 

Par contre, B


 et H


 possède une fonction potentielle appelée "potentiel scalaire" : 

VdgraH


 , qui permet de calculer certains intégrales portant sur H


, alors que B


, en 

général, n’en possède pas. 

Il faut faire attention à la confusion qui peut être engendrée par des descriptions trop 
simplifiées des champs magnétiques. 

* Dans le vide : B


 et H


 sont rigoureusement proportionnels : HB


0  avec 

4

0 10.4    et par conséquent, ils auront les mêmes propriétés (c’est-à-dire H


 sera 

conservatif et B


 possède une fonction scalaire). 
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** Dans les milieux ferromagnétiques : Il ne faut pas perdre de vue que H


 se 

calcule et ne se mesure pas ; alors que B


 se mesure, mais, ne se calcule qu’avec 
précision, que si l’on connait parfaitement la valeur de  . 

 

IX.2.3. Le flux magnétique   : 

Le flux magnétique, noté par  , représente la densité d’induction magnétique des 

lignes de forces issues d’une source magnétique. Il s’exprime par le Weber. 

 

IX.2.4. La perméabilité des milieux magnétiques  : 

La valeur de référence est la perméabilité du vide 0 , donné égale à 410.4  . De 

manière générale, la perméabilité  , (de même que 0 ), est une véritable grandeur 

physique et qui représente un paramètre qui caractérise la facilité avec laquelle les 
milieux magnétiques se laissent traverser par les lignes de forces d’induction 
magnétiques. On a : 

                                                           r 0                                                                    (IX.3) 

Où r  est la perméabilité relative. 

Cette perméabilité relative r , qui est un nombre pure, reste pratiquement constant 

en dessous de la saturation. 

 

IX.2.5. Notion d’inductances (L et M) : 

S, on a deux circuits capables de s’influencer réciproquement, l’un traversé par un 
courant i et l’autre par un courant i’. On appelle flux intégral : 

                                                         
 sdB


.                                                               (IX.3) 

Le flux intégral produit par chaque circuit peut être décomposé en une partie qui lui 
soit propre et une partie qui ne concerne que l’autre circuit. Le flux de fuite est alors 
définit comme étant la différence entre ces deux derniers : 

                                                          1211  f                                                               (IX.4) 

On démontre que l’inductance mutuelle M, qui caractérise la partie du flux 
interchangeable entre les deux circuits est donnée par : 
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2

1

2

1

2
2121

2











N

N

L

L
LLMLLM     et                                               (IX.5) 

- Pour une valeur exactement égale à 21LLM  , le couplage correspondant est 

dit "critique". 

- Pour 21LLM  , le couplage est dit "serré". Les fuites sont alors faibles. 

- Pour M << 21LL  le couplage est dit "lâche" et les fuites deviennent 

prépondérantes. Le couplage entre ces deux circuits est généralement exprimé par la 
relation : 

                                                          
21LL

M
k                                                                   (IX.6) 

Alors, la mesure des grandeurs L1 L2 et M séparément permettent de connaître 
l’importance des fuites engendrées et par conséquent, de bien caractériser la qualité 
de l’interaction entre les circuits couplés. 

 

IX.2.6. Notion de réluctance R : 

Les matériaux magnétiques ne sont pas tous perméables vis à vis des lignes de 
forces d’induction magnétiques. Exemple, la fonte n’est pas aussi perméable que le fer 
doux. On appelle réluctance la manière avec laquelle on caractérise l’opposition de 
passage des lignes de forces d’induction magnétiques d’un milieu magnétique donné. 

Pour quantifier cette notion, si on applique le théorème d’Ampère à une ligne de 
champ, o aura : 

                                               
 s

ldBsldB
ldHNI


 ..

.                                (IX.7) 

d’où: 

                                                         


   s

dl
NI                                      (IX.8) 

avec : 

                                                               
B

A s

dl


                                             (IX.9) 

pour une portion de circuit allant de A à B. 
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Cette nouvelle grandeur physique s’appelle la réluctance. Son unité est l’inverse 
du Henry [H-1]. L’expression : 

                                                              NI                                              (IX 10) 

est appelée la relation de Hopkinson 

Donc, à l’aide de cette dernière relation, on voit qu’on peut calculer la réluctance 
d’une portion de circuit, alors que le théorème d’Ampère n’est valable que pour un 
circuit fermé et devient faux pour une portion de circuit. 

Si, de plus, on veut exprimer la réluctance en fonction de l’inductance propre L du 
circuit on a : 

                     2

21

2. NLLLNNILNLI                                                 (IX.11) 

où: 

                                                           
L

N 2

                                                  (IX 12) 

 

IX.3. MÉTHODES ET TECHNIQUES DE MESURE MAGNÉTIQUES : 

Les mesures directes du flux magnétique   ou de l’induction B


 sont faites 

généralement par un fluxmètre. Cet appareil n’est autre qu’un galvanomètre classique 
(voir chap.III.1), mais sans couple directeur et à fort coefficient d’amortissement. 

Si, ces considérations sont prises en compte, le principe de mesure sera déduit en 
remplaçant l’équation (III.13) du galvanomètre. 

                                         IC
dt

d
A

dt

d
J 02

2




                                                        (III.13) 

Par :                                                      I
dt

d
A

dt

d
J 02

2



                            (IX.13-a) 

En intégrant entre les instants 0 et t, et sous réserve que le fluxmètre soit au repos 
au commencement et à la fin de la mesure, donc que : 

:                                                      0
0

0 2

2


t

t

dt

d
Jdt

dt

d
J


                            (IX.13-b) 

Il reste :              qAIdtdAdt
dt

d
A e

tt e

.. 0
0

0
00


 


 




                         (IX.13-c) 
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Où q est la quantité d’électricité totale ayant traversée le cadre entre les instants 0 
et t. Si, le fluxmètre est branché aux bornes d’une bobine traversée par le flux  , la 

force électromotrice produite par la variation du flux dans la bobine, pendant l’intervalle 
de temps dt est : dtde / . La force électromotrice dans le cadre du fluxmètre, 

proportionnelle à la vitesse est : dtdke /.  . La loi générale de l’induction donne : 

                                  
dt

d
k

dt

d
ee

dt

dI
LrI


.0                                    (IX.13-d) 

Où r est la résistance du circuit formé par la bobine et le cadre du fluxmètre et L 
l’inductance propre du même circuit. On peut écrire l’équation (IX.13-d) sous la forme : 

                                         
dt

d
k

dt

dI
LrI

dt

d 
.0                                        (IX.13-e) 

 

Si l’on intègre entre le temps 0 et t correspondant à la durée du mouvement : 

                                          
et

dkdILIdtrd
I

I

tt 


000

.
0

                         (IX.13-f) 

 

Dans les conditions habituelles d’emploi du fluxmètre, I est nul au commencement 

et à la fin du mouvement. On a donc : 0
0


tI

I
dI . 

D’autre part, 0
0


t

Idt  ; ekdk
e




..
0

  ;   
t

d
0

, en éliminant q, 

l’équation(IX.13-f) devient : 

                                 ee

Ar
kkrq 


 










0

.     :Donc                    (IX.13-g) 

 

Cette relation donne une correspondance entre l’angle de déviation de l’appareil et 

le flux traversant sa bobine. Si le terme 0/A  est négligeable, cette correspondance 

est indépendante de la résistance r, et en fin de compte on aura la relation : 

                                                           .. ek                                             (IX.13-h) 

La déviation du fluxmètre est proportionnelle à la variation du flux traversant la 
bobine. 
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De plus, de la faible valeur de A, et compte tenu de l'équation (IX. 13-b), on déduit 
que q est très faible ; on admet généralement que cette quantité d'électricité traversant 

le cadre est nulle, e  et 0  étant des termes finis. 

Le terme 0/A  est caractéristique de l'appareil. 

Si la bobine a n tours, la variation du flux magnétique dans lequel elle est plongée 
est : 

                                                   
n

k
n

e
 .


                                            (IX.13-i) 

où : k est la constante du fluxmètre exprimée en Webers (ou en Maxwell 1M = 10-8 
Wb). 

 

Pour pouvoir utiliser cet appareil en plusieurs applications, on lui associe 
généralement une resistance shunt qu'on place entre ses bornes. 

 

- Si l'appareil n'est pas shunté : 

Dans ce cas, l'appareil permet de mesurer l'induction magnétique   avec une 

sensibilité k (k = 2 x lO-4 Wb) indépendante de la résistance interne de la bobine. Si 
cette bobine exploratrice utilisée pour la mesure d'une induction magnétique possède 

n spires de sections s chacune, alors B


 sera donnée par : 

                                                   
ns

k
ns

B e
.                                               (IX.13-j) 

s étant exprimée en cm2, l'induction B , en Tesla. 

 

* Si I'appareil est shunté : 

Dans ce cas, k devient dépendant de la resistance interne de la bobine. La 
résistance aux bornes du fluxmètre shunte, non pas le fluxmetre, mais, la bobine 
exploratrice. Si R est la resistance de cette bobine et R' la résistance shunte, alors la 
sensibilité k de l'appareil sera donnée par : 

                                                   
R

RR
kk




 .                                               (IX.13-h) 
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Figure IX.1 : Principe de mesure directe du flux magnétique  ɸ  et de l’induction 𝐵⃗ 1 par 
fluxmètre. 

 

IX.3.1. Mesure de l’inductance magnétique  B


 par effet Hall : 

 

 

La présence des deux champs électrique 𝐸⃗ m et magnétique  𝐵⃗ entraine une 
accumulation de charges sur les parties supérieurs et inférieurs et de l’échantillon. 
Entre ces deux faces va apparaitre une tension appelée tension de Hall. 

On utilise cette tension pour mesurer le champ d’induction magnétique 𝐵⃗ . 

 

 

 

 

 
P : Boutin poussoir permettant de 
court-circuiter l’élément de mesure et 
réglage de l’aiguille. 

T : Bouton de commande de l’aiguille. 

 

 

Le principe de cette méthode est 
base sur l’emploi d’une plaquette 
mince d’un semiconducteur de 
dimensions connues a,b et c que l’on 
dispose de façon normale a un 

champ d’induction magnétique 𝐵⃗  
qu’on veut mesure .  

On applique une tension continue 
E sur deux cotés parallèles . 

 
Figure IX.2 : Principe de la méthode 

d’effet Hall. 
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De plus, cette méthode permet de mesure la mobilité des porteurs libres et leur 
nature si on connait la résistivité du matériau. 

Pour le schéma de principe qui correspond au cas de la figure (IX.2) ci-dessus, si 
nous écrivons les forces électriques et électromagnétique agissant sur électron, nous 
aurons : 

 

               𝐹⃗⃗  ⃗ = (-q)𝐸⃗       d’une part, et             𝐹⃗⃗  ⃗ =(-q)𝑣  𝐵⃗         d’autre part,                   (IX.14) 

 

À l’équilibre, ces deux forces deviennent égales : 

 

              𝐹⃗⃗  ⃗E    =    𝐹⃗⃗  ⃗B     =>     (-q) 𝐸⃗ = (-q) 𝑣  𝐵⃗                           EH = v.B                 (IX.15) 

Ce qui  crée une tension de Hall : 

                            VH = EH.c = v.B.c                                                                                         (IX.16) 

On peut facilement démontrer que la densité de courant (nombre de porteurs de 
charges par unité de surface) peut être exprimée par la relation suivante : 

 

            J = (-q)nv                      d’où le courant :             I = J.s = (-q)nv. bc               (IX.17) 

 

En utilisant cette dernière relation, l’expression (IX.14) de la tension Hall VH devient :  

 

                                  
    b

BI
R

b

BI

nqb

B

nq

I
vBcV HH 





 .

1
.                                 (IX.18) 

Donc :  

                                                           
 nq

RH



1

                                                           (IX.19) 

RH est appelé constante de Hall. 

L’expression de l’induction 𝐵⃗  sera donnée par : 

                                                           
IR

bV
B

H

H

.

.
                                                            (IX.20) 
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On voit donc, qu'à partir de la détermination de la constante RH et de la mesure de 
la tension de Hall VH, on peut accéder à la mesure de l'induction B. 

Cependant, comme RH  et une constante qui fait intervenir d'une part, le mouvement 
d'une charge électrique et d'autre part, son interaction avec le réseau cristallin de la 
plaquette échantillon, son expression est selon les cas suivant est donnée par  

                            
nq

RH

1

8

3
        pour le cas des électrons                                    (IX.21) 

 

                             
pq

RH

1

8

3
      pour le cas des trous                                              (IX.22) 

 

De manière plus générale, si on veut tenir compte des deux types de porteurs de 
charges majoritaires (électrons) par exemple pour un type N et minoritaire (trous), la 
constante de Hall RH sera exprimée par : 

 

                                        
 












2

2

88

3

pnr

pnr
RH


                                                              (IX.23) 

 

Où : r=un/up est une constante faisant intervenir la mobilité intrinsèque des électrons 
et des trous. 

’est )

H


 B


 
)

r  q

, ède que 
les valeurs du courant.
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Figure IX.3 : Courbe de première et seconde aimantation d'un noyau de fer d'un circuit 

magnétique (a) et (c) respectivement, ainsi que de la variation de la perméabilité relative r  

en fonction de l'excitation H. 

 

Un arrangement simultané dans le calcul des trois grandeurs B


, H


 et r  permet 

d'avoir la courbe complète qui est celle de la (Figure IX.3-c), appelée "cycle 
d'hystérésis". 

Le parcours complet d'un cycle échauffe le matériau et développe une quantité de 
chaleur (en joule) qu'on peut calculer par : 

 

                                                      HdBvW


.                                                                 (IX.24) 

 

Où v  est le volume de l'échantillon analysé,  HdB


.  est la surface du cercle 

(intégrale étendue à une courbe fermée) en J/m3. 

 

IX.3.2.2. Tracée expérimental du cycle d'hystérésis : 

Le cycle d'hystérésis défini par la relation B= f (H), où les deux grandeurs B(t) et H(t) 
sont des variables dans le temps, peut être visualisées à l'aide d'un oscilloscope selon 
le montage donné à la (Figure IX.4) ci-dessous. 
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Figure IX.4 : Montage expérimental destiné à la visualisation du cycle d‘hystérisis et à la 
mesure de ces paramètres. 

 

On sait que : 

                                                   IkI
l

N
H ..1                                                                 (IX.25) 

où Ɩ est la longueur moyenne du circuit magnétique et N1 est le nombre de spires de 
l‘enroulement primaire. 

Le courant I, image de H


 est prélevé aux bornes de la résistance r. 

Pour conserver un déphasage correct entre I et la tension d‘alimentation, r doit être 
négligeable devant l’inductance Lω de l‘enroulement primaire. 

Dans la pratique, on choisit une valeur de r comprise entre 10 et 20 Ω. 

 

La tension e2 induite aux bornes de l’enroulement secondaire N2 est donnée par : 

 

                           
sN

dte
dB

dt

dB
sNe

2

2
22                                                                    (IX.26) 

d’où: 

                                                      dte
sN

B 2

2

1
                                                           (IX.27) 

 

La f.e.m e2 est l‘image de la dérivée de l’induction magnétique B


 par rapport au 
temps. 
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Pour obtenir B


 et H


 en phase, un circuit intégrateur RC est indispensable au 
secondaire. La tension proportionnelle à e2 est l’image de sera prélevée aux bornes du 
condensateur C. 

Dans les cas pratique, on choisit R = 50 KΩ et C = 1 µF pour une visualisation 
correcte du cycle d’hystérésis. 

 

Exemple : 

Le tracé de la courbe ci-dessous (voir Figure IX.4) est obtenu en utilisant les 
données suivantes :  

R =100 KΩ ; r =100 Ω ; C = 5 µF et un transformateur démontable ayant N1 = N2 = 
500 spires. 

 

 

 

FigureIX.5 : Résultat obtenu par utilisation du montage de la (Figure IX.4) données ci-
dessus. 
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Chapitre X 

 

X.1. INTRODUCTION : 

Les appareils de mesures numériques sont constitués d'éléments électroniques et 
les valeurs mesurées sont affichées au moyen de chiffres. Leur principal avantage est 
d'éliminer les erreurs dues à l'imprécision de la lecture. Nous donnons le nom de 
numérique, à un appareil, pouvant représenter par un nombre la grandeur mesurée. 
Mais, il faut faire attention : Il ne faut pas confondre chiffre et nombre. Les chiffres 
composent toujours le nombre comme les lettres composent toujours un mot. 

Quant au terme digital, il vient d'un anglicisme ayant comme synonyme binaire (2 
états 0 ou 1). Il est donc erroné de parler d'appareil de mesures à affichage digital. 

Dans la pratique, les catalogues d'appareils de mesures entretiennent cette erreur 
en parlant d'affichage à 4.5 digits, à 4 digits, ou 3.5 digits. 

Ces appareils sont basés sur un principe tout à fait différent de celui des appareils 
analogiques. Leur constitution est purement électronique depuis l'amplificateur à haute 
impédance d'entrée jusqu'à l'affichage de la mesure. Cet affichage peut se faire soit 
par les diodes électroluminescentes ou par les cristaux liquides. 

Ils donnent directement en chiffre un nombre indiquant la valeur de la grandeur qu'il 
mesure. Chacun des chiffres de l'afficheur s'appelle digit. Le nombre de digit dépend 
du type d'appareil, il est généralement supérieur ou égal à 3. La précision de la mesure 
des appareils numériques dépend généralement du nombre de digit. Plus ce nombre 
est grand, meilleur est la résolution. On appelle résolution, le plus petit écart de tension 
ou de courant décelable par l'appareil à affichage numérique. 

Ces appareils sont généralement dotés d'un commutateur qui permet de changer 
les calibres et de fonctions. Les principaux avantages des appareils à affichage 
numérique sont : 

- La facilité d'utilisation. 

- La grande précision. 

- La résistance d'entrée supérieure à 1 MΩ/V. 

- Leur facilité de lecture. 
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Les inconvénients sont : 

* Le prix qui reste assez élevé. 

** Leur fragilité (n'accepte pas les chocs électriques et mécaniques). 

*** Les difficultés à repérer le maximum ou le minimum d'un signal. 

 

X.2. PRINCIPE DES APPAREILS DE MESURES NUMERIQUES : 

Comme la structure des appareils de mesures numériques ne repose pas sur des 
bases mieux décrites par les mécanismes physiques et les concepts mécaniques, mais 
plutôt sur des modules entièrement conçus de composants électroniques, le principe 
de fonctionnement se trouve orienté vers l’intégration des circuits électroniques ayant 
des fonctions spécifiques. Le schéma synoptique général d'un tel appareil est donné 
par le schéma fonctionnel suivant : 

 
Figure X.1 : Schéma synoptique d'un appareil numérique 

 

X.3. FONCTIONNEMENT DES APPAREILS DE MESURES NUMÉRIQUES : 

Nous allons présenter les différents étages de fonctionnement qui commence par le 
circuit du choix de la gamme de mesure et qui finit par l’affichage du résultat de mesure. 
L’attention est surtout attirée sur la numérisation du signal qui sera assurée par un 
Conversion Analogique/Numérique (CNA) et notamment l'influence des paramètres de 
la conversion tels que la fréquence d'échantillonnage et le pas de quantification. 

 

X.3.1. Étage du capteur : 

Les appareils de mesure numériques sont le plus souvent constitués d'un capteur 
transformant la grandeur à mesurer en tension associée à un voltmètre numérique. 
C’est ce qu’on fait le plus souvent, comme par exemple, quand on veut mesurer un 
courant à l’aide de multimètre. Car, mesurer un courant impose le passage par un 
montage "Shunt" offrant justement la méthode de conversion d'un courant en tension. 
Ces capteurs peuvent être de natures différentes selon les performances et les limites 
voulues aux moments d’utilisation. 
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X.3.2. Étage du choix du calibre : 

Cet étage est constitué d’un jeu de résistances disposées de manière à pouvoir 
choisir, à l’aide d’un commutateur, la valeur de la résistance d’entrée de l’appareil de 
telle sorte à pouvoir réaliser l’adaptation d’impédance en fonction de la grandeur à 
mesurer et du calibre qui lui soit le mieux choisi. 

 

X.3.3. Circuit de mise en forme du signal : 

Le circuit de mise en forme, toujours associé au capteur, permet de donner un signal 
correct, nécessaire au processus de mesure et qui reste le plus possible fidèle à la 
grandeur à mesurer. Il contient généralement une amplification et un filtrage. 
L’amplification permet d’adapter le niveau du signal issu du capteur à la chaîne globale 
d’acquisition. Le filtrage, appelé aussi "technique anti-repliement" est nécessaire pour 
corriger le signal des effets parasites et de limiter le contenu spectral du signal aux 
fréquences qui nous intéressent 

 

X.3.4. Conversion Analogique/Numérique (CNA) : 

C’est l’étape clé de la mesure. Pour cette raison, cette partie sera la plus détaillée 
que les autres. On va la commencer par une introduction qui abordera la notion de 
numérisation d’un signal analogique. Ensuite, nous présenterons les différentes 
techniques d’échantillonnage et enfin, nous évoquerons l’opération de codage qui, 
permettra d’avoir les informations sous forme de données numériques faciles à 
présenter en résultat à l’aide d’afficheurs. Donc, l’attention est surtout attirée sur la 
numérisation du signal qui sera assurée par un Conversion Analogique/Numérique 
(CNA) et notamment l'influence des paramètres de la conversion tels que la fréquence 
d'échantillonnage et le pas de quantification. 

 

X.3.4.1. Notion de base de numérisation d’un signal analogique : 

Un signal analogique est un signal continu qui peut prendre une infinité de valeurs, 
alors que le signal numérique est un signal discret (discontinu), qui se résume en une 
succession de "0" et de "1" (voir Figure X.2 ci-dessous). 

 
Figure X.2 : Signal analogique et signal numérique 

 

http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/signal-analogique-numerique.png
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L’objectif de la numérisation est de transformer le signal analogique qui contient une 
quantité infinie d'amplitudes en un signal numérique contenant lui une quantité finie de 
valeurs. 

Le passage de l'analogique au numérique consiste en 2 étapes successives : 
l'échantillonnage et la conversion analogique-numérique (CAN). 

Le nombre d'échantillons composant le signal numérique devra être suffisamment 
grand pour pouvoir représenter le signal analogique de départ mais pas trop grand non 
plus pour ne pas être trop volumineux. 

Deux facteurs devront être ajustés pour répondre à ce cahier des charges : la 
précision et la rapidité. 

 

X.3.4.1.1. Rapidité ou choix de la fréquence d’échantillonnage : 

Le premier paramètre à fixer est la vitesse à laquelle seront prélevés les échantillons 
pour que la reconstruction du signal de sortie soit fidèle au signal d'entrée. La 
fréquence d'échantillonnage doit être suffisamment grande. En effet, si celle-ci est trop 
faible, les variations rapides du signal ne pourront être retranscrites. 

Voici deux exemples d'échantillonnage du même signal pour deux fréquences : 
fe1=1/Te1 et fe2=1/Te2. 

 
 

Figure X.3 : Signal échantillonné à Te1 

 

 
 

Figure X.4 : Signal échantillonné à Te2 > Te1 

http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/echantillonnage-fe-ok.png
http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/echantillonnage-fe-non-ok.png
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Dans le premier exemple, la fréquence d'échantillonnage choisie permet de 
reproduire les variations du signal. Par contre, dans le second exemple, il est clair que 
les échantillons recueillis ne sont pas suffisants pour reconstruire le signal d'origine. 

Le théorème de Shannon permet de connaître la fréquence d'échantillonnage à 
choisir pour un signal donné : 

Pour reconstruire un signal de sortie de manière fidèle au signal d'entrée, il faut 
choisir une fréquence d'échantillonnage au moins deux fois supérieure à la fréquence 
maximale contenue dans le signal d'entrée (fe > 2 fmax). 

Si cette règle n'est pas respectée, des fréquences parasites qui n'appartiennent pas 
au signal de départ apparaissent. Ce phénomène est le repliement spectral ou aliasing. 

 

Exemple 1 : 

Cas d'un signal sinusoïdal : 

 

Figure X.5 : Spectre d'un signal sinusoïdal 

 

                                                
 

Figure X.6 : Spectre du signal sinusoïdal                        Figure X.7 : Spectre du signal sinusoïdal 
           échantillonné à fe > 2 fmax                                                             échantillonné à fe < 2 fmax 
 
fe respecte le critère de Shannon                                  fe ne respecte pas le critère de Shannon 
 

http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/spectre-sinus.png
http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/spectre-sinus-ech-ok.png
http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/spectre-sinus-ech-non-ok.png
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Exemple 2 : 

Cas d'un signal quelconque. 

 

                      
 

Figure X.8 : Spectre d'un signal quelconque                 FigureX.9 : Spectre d'un signal quelconque 
               échantillonné à fe > 2 fmax                                    . échantillonné à fe < 2 fmax. 
 

fe respecte le critère de Shannon              fe ne respecte pas le critère de Shannon 
 

Lorsque le critère de Shannon n'est pas respecté, la fréquence d'échantillonnage 
est trop proche de la fréquence maximale du signal et on observe le mélange des 
fréquences hautes et des fréquences plus basses (voir Figure X.5 à X.9). 

On observe que dans les deux exemples ci-dessus il devient impossible d’effectuer 
une séparation correcte des fréquences lorsque le critère de Shannon n'est pas 
respecté. 

 

X.3.4.1.2. Précision ou choix du pas de quantification : 

La précision ou résolution du signal obtenu en sortie va dépendre du convertisseur 
utilisé, autrement dit de l'électronique mise en œuvre. La limite théorique de la 
résolution est définie par le nombre de bits du convertisseur analogique numérique. 

L'exemple de la (Figure X.2) montre un signal analogique codé sur 1 bit, seules deux 
valeurs sont possibles pour ce bit soit "0" soit "1". La précision est alors très faible et 
ne permet pas un résultat satisfaisant. 

Lorsque le codage s'effectue sur 2 bits, chaque bit pouvant prendre deux valeurs 
("0" ou "1"), ce qui veut dire qu’on aura dans ce cas 22 valeurs à pouvoir stocker dans 
des mémoires, soit un pas de quantification de 2,5 V (10/4). 

 

http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/spectre-echantillonnage-ok.png
http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/spectre-echantillonnage-non-ok.png
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Figure X.10 : Signal analogique codé sur 2 bits 

 

Dans cet exemple, le signal a une amplitude de 10 volts : 

- 0 à 2,5 V, le code sera "00" 

- 2,5 V à 5 V, le code sera "01" 

- 5 V à 7,5 V, le code sera "10" 

- 7,5 V à 10 V, le code sera "11" 

Plus le nombre de bits sera important et meilleure sera la précision, mais plus le 
signal occupera de mémoire. 

 

Voici deux exemples de codage sur 3 et 4 bits à fréquence d'échantillonnage fixe. 

 

 
 

Figure X.11 : Signal analogique codé sur 3 bits 

 

http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/codage-2bits.png
http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/codage-3bits.png


174                                                                                                                   Chapitre X 
 

 

 
 

Figure X.12 : Signal analogique codé sur 4 bits 

 

Le réglage des paramètres (précision et rapidité) se fera donc en fonction des 
contraintes techniques et de l'utilisation souhaitée. Il faudra donc faire des compromis 
entre précision et taille du signal. De même, la précision, liée au nombre de bits, 
dépend d’autre part, de la technologie du convertisseur utilisé. 

 

X.3.4.2. Les différentes techniques de conversions : 

Les techniques de conversions des signaux analogiques en données numériques 
utilisant le principe d’échantillonnages sont diverses et reposent sur des concepts 
variés. Les modèles de conversions plus utilisés dans la pratique sont celles qui sont 
cités ci-dessous : 

1°) Convertisseur à simple rampe. 

2°) Convertisseur à double rampe. 

3°) Convertisseur Sigma Delta. 

4°) Convertisseur à approximations successives. 

5°) Convertisseur flash. 

6°) Convertisseurs semi-flash pipeline. 

Si, nous prenons comme exemple le cas du premier concept : Convertisseur à 
simple rampe, son mode de fonctionnement est résumé comme suit : 

On réalise au moyen d'un compteur et d'un convertisseur numérique-analogique une 
rampe de tension. Un comparateur arrête le compteur lorsque la tension créée par le 

CNA atteint la tension à convertir. Le compteur indique alors le résultat sur N bits, qui 
peut être stocké ou traité. 

https://fr.wikipedia.org/wiki/Convertisseur_analogique-num%C3%A9rique#Convertisseur_.C3.A0_simple_rampe
https://fr.wikipedia.org/wiki/Convertisseur_analogique-num%C3%A9rique#Convertisseur_.C3.A0_double_rampe
https://fr.wikipedia.org/wiki/Convertisseur_analogique-num%C3%A9rique#Convertisseur_Sigma_Delta
https://fr.wikipedia.org/wiki/Convertisseur_analogique-num%C3%A9rique#Convertisseur_.C3.A0_approximations_successives
https://fr.wikipedia.org/wiki/Convertisseur_analogique-num%C3%A9rique#Convertisseur_flash
https://fr.wikipedia.org/wiki/Convertisseur_analogique-num%C3%A9rique#Convertisseurs_semi-flash_pipeline
https://fr.wikipedia.org/wiki/Compteur
https://fr.wikipedia.org/wiki/Convertisseur_num%C3%A9rique-analogique
https://fr.wikipedia.org/wiki/Convertisseur_num%C3%A9rique-analogique
http://culturesciencesphysique.ens-lyon.fr/images/articles/conversion-analogique-numerique/codage-4bits.png
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Ces convertisseurs ont les mêmes performances en termes de stabilité que les 
convertisseurs à approximations successives, tout en étant nettement plus lents que 
ces derniers. De plus, leur temps de conversion qui évolue avec la tension à convertir 
les rend totalement absents du monde de l'électronique. Ceci a fait que, le plus 
souvent, à la place de la conversion simple rampe on utilise la conversion à double 
rampe. Cette évolution des convertisseurs à simple rampe permet de s'affranchir de 
la dérive naturelle des composants qui le composent. Son fonctionnement repose sur 
une comparaison entre une référence et le signal à convertir. 

La conversion se déroule en trois étapes : 

i) on charge une capacité avec un courant proportionnel au signal à convertir 
pendant un temps fixe (le temps du comptage complet du compteur) ; 

ii) on décharge ensuite la capacité, avec un courant constant issu de la tension de 
référence, jusqu'à annulation de la tension à ses bornes. Lorsque la tension devient 
nulle, la valeur du compteur est le résultat de la conversion ; 

iii) on annule enfin la tension aux bornes de la capacité par une série convergente 
de charges et de décharges (l'objectif étant de décharger totalement la capacité pour 
ne pas fausser la mesure suivante). On parle en général de phase de relaxation. 

Ces convertisseurs sont particulièrement lents (quelques dizaines de millisecondes 
par cycle, et parfois quelques centaines), mais très précis (plus de 16 bits). Ils 
dérivent peu (dans le temps, comme en température). 

Avec cette étape on associe une autre étape de quantification. Cette dernière 
consiste à établir un fichier de codage qui permet d’établir la correspondance entre le 
signal analogique et sa valeur binaire. 

 

X.3.4.3. Décodage et affichage du résultat : 

Cette étape est la dernière que compte le processus de mesure et se termine par 
l’affichage du résultat de mesure. Il est assuré par le moyen d’afficheur à 7 segments. 
Cet élément est un composant qui permet de visualiser un chiffre. 

Il existe des afficheurs individuels réalisés avec des diodes électroluminescentes 
(DEL) et des panneaux comportant plusieurs chiffres réalisés avec des DEL ou avec 
des cristaux liquides (CL). 

La consommation des afficheurs à Cristaux Liquides (CL) est très faible mais ils 
nécessitent un rétroéclairage pour être visibles quand la luminosité ambiante est faible 
ou très forte. 

Pour les afficheurs à LED dont la consommation est assez importante, l'affichage 
est en général multiplexé. 

https://fr.wikipedia.org/wiki/Condensateur_(%C3%A9lectricit%C3%A9)
https://fr.wikipedia.org/wiki/Courant_%C3%A9lectrique
https://fr.wikipedia.org/wiki/Compteur
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Les afficheurs sont allumés successivement pendant une fraction de temps. La 
persistance des impressions lumineuses sur la rétine donne l'illusion d'un affichage 
continu. 

Selon la taille des afficheurs à DEL, chaque segment est constitué par une diode 
unique ou par une série de diodes placées sous un filtre diffusant. La couleur des 
afficheurs DEL (souvent du rouge) est fonction de la nature des diodes. En général 
l'information à afficher est un chiffre codé en DCB (décimal codé binaire) sur 4 bits. Il 
faut utiliser un circuit décodeur pour allumer les bons segments. Les afficheurs 7 
segments peuvent également afficher du HCB (hexadécimal codé binaire) avec un 
décodeur adapté.  

Dans ce cas la séquence affichée est : 0 1 2 3 4 5 6 7 8 9 A b C d E F. 

 

X.4. CLASSE DE PRECISION DES APPAREILS NUMERIQUES : 

L’avantages des systèmes numériques par rapport à ceux des systèmes 
analogiques sont certains. Cependant, notons que le passage dans le numérique 
s'accompagne d'une perte d'information puisque du signal analogique ne sont 
conservés que des échantillons. L'enjeu est donc de prendre suffisamment 
d'échantillons avec une cadence acceptable pour reconstruire au mieux le signal de 
départ tout en gardant un signal qui ne soit pas trop gourmand en espace. De plus, la 
résistance interne des instruments de mesure numériques est beaucoup plus grande 
que celle des appareils analogiques, et elle est fixe, quelle que soit la gamme de 
mesure sélectionnée. L'erreur induite lors des mesures ne sera importante que pour 
les circuits à très grande impédance. 

 

X.4.1. Type d’erreurs des appareils numériques : 

En ce qui concerne l'erreur de mesure proprement dite, elle se compose de deux 
types d'erreurs : 

1- Erreur dépendante de l'électronique de l'instrument. 

2- Erreur dépendante du nombre de mesures effectuées pour la conversion 
analogique/numérique. 

L'erreur est généralement donnée en % de la lecture ± une constante exprimée en 
unités ou en digits. Certains fabricants donnent l'erreur en % de l'échelle ± la constante. 
Cette façon de faire cache généralement la mauvaise qualité de l'appareil. 

L'erreur constante (que nous donnerons en "digits") indique de combien le chiffre 
binaire de poids le plus faible peut être faux. Le chiffre de poids le plus faible représente 
la résolution de l'appareil (Pour une échelle de 100 [mV] et 2000 points de mesure, la 
résolution sera de 0.1 [mV]). 
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X.4.2. Exemples de calculs d'erreurs des instruments numériques : 

Exemple 1 : Nous mesurons une tension de 50 [mV] sur l'échelle 100 [mV]. 
L'instrument effectue 2000 points de mesure. Les caractéristiques mentionnées sur 
l’appareil donnent : 0.1 % de la lecture et ± 0.5 digits. 1 digit = 0.1 [mV] 

Erreur de lecture :        digits 0,5               V 50                


V6
3

10.50
100

1,0.10.50
 

Erreur de constante :     digits 0,5               V 50                


V6
3

10.50
2000

10.100
 

Dans notre cas, la précision est de ± 0.5 digits, soit au total 1 digit, ce qui donne une 
erreur de 100 [µV] 

Erreur totale = somme des deux types d’erreurs : 

  V 100                 666 10.10010.5010.50 . Cette erreur de 100 [µV] correspond à 

1 digit. 

 

Exemple 2 : Nous mesurons une tension de 50 [mV] sur l'échelle 150 [mV]. 
L'instrument effectue 2000 points de mesure. Les caractéristiques mentionnées sur 
l’appareil donnent : 0.2 % de la lecture et ± 0.1 % de l'étendue de mesure. 

Erreur de lecture :       digit  1               V 100                


V6
3

10.100
100

2,0.10.50
 

Erreur de constante :     digits  2               V 200                 V610.200
100

1,0.200
 

Erreur totale = somme des deux types d’erreurs : 

  V 300                 666 10.30010.20010.100 . Cette erreur de 300 [µV] correspond 

à 3 digits 

 

Exemple 3 : Nous mesurons une tension de 50 [mV] sur l'échelle 200 [mV]. 
L'instrument effectue 2000 points de mesure. Les caractéristiques mentionnées sur 
l’appareil donnent : 0.1 % et ± 1 digit. 

Erreur de lecture :     digits  2               V 200                 V610.200
100

200.1,0
 

Erreur de constante :     digit  1               V 100                


V6
3

10.100
2000

10.200
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Cette erreur de 100 [µV] correspond à un digit. Dans notre cas, la précision est de ± 
3 digits, soit au total 3 digits, ce qui donne une erreur de constante de 300 [µV]. 

Erreur totale = somme des deux types d’erreurs : 

  V 300                 666 10.30010.10010.200 . Cette erreur de 300 [µV] 

correspond à 3 digits. 

 

X.4.2. Importance de la résistance interne d’un appareil de mesures numériques : 

La résistance interne d'un appareil de mesures numériques est souvent beaucoup 
plus élevée que celle d'un appareil de mesures analogiques (facilement de l'ordre du 
Méga-ohms, MΩ). L'erreur induite lors de la mesure par ce type d'appareil n'est 
importante que pour des circuits à très grande impédance. La résistance d'entrée des 
appareils de mesures numériques est constante quelle que soit l'échelle choisie. 

 

X.5. CIRCUITS MODELS DE MULTIMÈTRES NUMÉRIQUES : 

 

        
 

Figure X.13 : Exemples de circuits de multimètres numériques. 

 

Description du fonctionnement : 

Cet instrument (Figure X.13 à droite) est composé de 3 affichages (display) 
commandés par un circuit intégré (IC2) et par 5 transistors T1 à T5. Le premier circuit 
intégré IC1 effectue la conversion de la valeur analogique mesurée en une valeur 
numérique destinée à être affichée. 
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L'IC1 reçoit la valeur analogique (tension) sur ses bornes 10 et 11. La méthode 
utilisée pour mesurer cette valeur est celle de la comparaison. Le circuit intégré fournit 
une valeur de référence (connue de lui) et il la compare avec la tension présente sur 
son entrée (inconnue). Si cette comparaison ne montre pas une égalité, le circuit 
intégré augmente sa valeur de référence et il effectue une nouvelle comparaison. Il va 
procéder comme cela jusqu'à ce que les deux valeurs comparées soient égales. 

Cette méthode permet au circuit intégré de déterminer avec précision la valeur de 
la tension présente sur ses bornes d'entrées. 

Une fois cette valeur définie, IC1 donne une valeur numérique au résultat de sa 
comparaison. Cette valeur numérique est présente sous la forme d'un mot de 4 bits sur 
les bornes 2, 1, 15, et 16. IC2 reçoit cette numérique et il la décode pour commander 
les affichages 7 segments. 

Nous constatons que les 3 affichages sont montés en parallèle. Cela devrait poser 
un problème, car tous les segments de même nom devraient s'allumer simultanément. 
Ce n'est pas le cas car nous avons à faire à un mode d'affichage multiplexé. 

IC1, qui fournit les valeurs numériques de la tension mesurée, commande 
également le display sur lequel cette valeur doit être affichée. Cette commande est 
réalisée au moyen des bornes 4, 3 et 5. Les transistors T1, T2 et T3 commandent 
l'alimentation des affichages. 

Lorsque IC1 donne une valeur qui doit être affichée par le premier display, il va 
commander son alimentation par l'intermédiaire de sa borne 4 et du transistor T1. 

Avec ce type d'affichage multiplexé, les displays s'allument l'un après l'autre. Il n'y a 
jamais deux affichages allumés simultanément. La vitesse d'allumage est assez rapide 
pour que notre œil ne puisse pas percevoir cet effet (voir la définition de la persistance 
rétinienne dans le chapitre courant alternatif sinusoïdal). 

L'affichage multiplexé permet également d'économiser de l'énergie puisqu'il n'y a 
qu'un seul affichage allumé. 

Cette caractéristique est importante pour les instruments portables qui fonctionnent 
sur piles 
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Table de "t Student" 

Cette table donne, en fonction du nombre de mesure n, la probabilité α appelée 
aussi niveau de confiance pour que t égale ou supérieure, en valeur absolue une valeur 

 𝑡𝛼 : Pr {-𝑡𝛼 ≤ t ≤ +𝑡𝛼 } = α (c'est-à-dire comprise dans un intervalle de confiance 

délimitée par [−𝑡𝛼;  +𝑡𝛼]. 

 

 

Exemple de lecture de table "t Student"  

Supposons que le graphe d’une distribution du "t Student", à n =10 est celui donné 
ci-dessus ou A désigne l’aire hachurée à gauche et B celle hachurée à droite. 

Pour trouver les valeurs de t, telles que : 

l’aire B égale = 0.05 ; 

l’aire A égale 0.01 ;  

et l’aire 1-(A+B) égale 0.99. 

 

Solution : 

La table de t student fournit, pour n = Cte, Pr {-𝑡𝛼 ≤  t  ≤ +𝑡𝛼 } = α, selon le schéma 
donné ci–dessus. 
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- L’aire B = 0.05 = α/2, soit α = 0.10. Donc, si Pr {-𝑡𝛼 ≤ t ≤ +𝑡𝛼 } = 0.10 et n = 10 on aura 
alors la Valeur 𝑡𝛼 = +1.833. 

- L’aire A = 0.01 = α/2, soit α = 0.02. Donc, si Pr {-𝑡𝛼 ≤  t  ≤ +𝑡𝛼 } = 0.02 et n = 10 on 
aura alors la Valeur 𝑡𝛼 = -2.821. 

- L’aire 1-(A+B) = 0.995, donc A+B = 0.01 = α, ce qui donne Pr {-𝑡𝛼 ≤ t ≤ +𝑡𝛼 } = 0.01 et 

n = 10, on aura alors la valeur 𝑡𝛼 = -3.251. 

 

 

n 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0.10 0,05 0,02 0,01 

2 0,158 0,325 0,510 0,727 1,000 1,376 1,963 3,078 6,314 12,706 31,821 61,657 

3 0,142 0,289 0,445 0,617 0,816 1,061 1,386 1,886 2,920 4,303 6,965 9,925 

4 0,137 0,277 0,424 0,584 0,765 0,978 1,250 1,638 2,353 3,182 4,541 5,841 

5 0,134 0,271 0,414 0,569 0,741 0,941 1,190 1,533 2,132 2,776 3,747 4,604 

6 0,132 0,267 0,408 0,559 0,727 0,920 1,156 1,467 2,015 2,571 3,365 4,032 

7 0,131 0,265 0,404 0,553 0,718 0,906 1,134 1,440 1,943 2,447 3,143 3,707 

8 0,130 0,263 0,402 0,549 0,711 0,896 1,119 1,415 1,895 2,365 2,998 3,499 

9 0,130 0,262 0,399 0,546 0,706 0,889 1,108 1,397 1,860 2,306 2,896 3,355 

10 0,129 0,261 0,398 0,543 0,703 0,883 1,100 1,383 1,833 2,262 2,821 3,250 

11 0,129 0,260 0,397 0,542 0,700 0,879 1,093 1,372 1,812 2,228 2,767 3,169 

12 0,129 0,260 0,396 0,540 0,697 0,876 1,088 1,363 1,796 2,201 2,718 3,106 

13 0,128 0,259 0,395 0,539 0,695 0,873 1,083 1,356 1,782 2,179 2,681 3,055 

14 0,128 0,259 0,394 0,538 0,694 0,870 1,079 1,350 1,771 2,160 2,650 3,012 

15 0,128 0,258 0,393 0,537 0,692 0,868 1,076 1,345 1,761 2,145 2,624 2,977 

16 0,128 0,258 0,392 0,536 0,691 0,866 1,074 1,341 1,753 2,131 2,602 2,957 

17 0,128 0,258 0,392 0,535 0,690 0,865 1,071 1,337 1,746 2,120 2,583 2,921 

18 0,128 0,257 0,392 0,534 0,689 0,863 1,069 1,333 1,740 2,110 2,567 2,898 

19 0,127 0,257 0,392 0,534 0,688 0,862 1,067 1,330 1,734 2,101 2,552 2,878 

20 0,127 0,257 0,391 0,533 0,688 0,861 1,066 1,328 1,729 2,093 2,539 2,861 

21 0,127 0,257 0,391 0,533 0,687 0,860 1,064 1,325 1,725 2,086 2,528 2,845 

22 0,127 0,257 0,391 0,532 0,686 0,859 1,063 1,323 1,721 2,080 2,518 2,831 

23 0,127 0,256 0,390 0,532 0,686 0,858 1,061 1,321 1,717 2,074 2,508 2,819 

24 0,127 0,256 0,390 0,532 0,685 0,858 1,060 1,319 1,714 2,069 2,500 2,807 

25 0,127 0,256 0,390 0,531 0,685 0,857 0,059 1,318 1,711 2,064 2,492 2,797 

26 0,127 0,256 0,390 0,531 0,684 0,856 1,058 1,316 1,708 2,060 2,485 2,787 

29 0,127 0,256 0,389 0,530 0,683 0,855 1,056 1,313 1,701 2,048 2,467 2,763 

>30 0,126 0,253 0,385 0,524 0,675 0,842 1,036 1,282 1,645 1,960 2,326 2,576 

 

 

 

 

 

 



 

 

 

 

 

 

 

A                                                                             Coupure (fréquence de -),110 

Aimantation, 52, 148, 153, 154                               Courant, 6, 29, 43-, 52- ,56… 

Ampèremètre, 52, 53, 54, 55                                  Croises (cadres-), 27, 28, 160- 

-(résistance interne de 1’), 53, 54  

Amplitude, 34, 35, 38, 39, 40                                  D 

Amortissement, 32, 37, 38, 39                                Détecteur, 83, 123, 128 

Appareil magnétoélectrique, 28                              Déphasage, 39, 118 

Apériodique, 34, 35, 37,                                          Disque, 29, 74 

 

B                                                                              E 

Bande passante, 109                                              Ecart-type, 18 

Basse fréquence, 100, 101, 122, 123                     Echelle, 8, 40, 62 

Battement, 40, 103, 122, 123, 124, 125                  Electrique (champ-), 46 

Biais, 19                                                                  Electronique, 128 

                                                                                Efficaces (valeurs), 56-59, 68 

C                                                                              Energie, 29, 74, 76 

Cadre ampèremètre, 52, 53-             Equations de mouvement du galvanomètre, 47 

Cadre galvanomètre, 43, 44-                                    - de l’ampèremètre, 53 

Cadre voltmètre, 54, 55-                                           - du  voltmetre, 55 

Calibre, 8, 31, 56                                                       Erreurs absolue, 2 

Campbell (pont de -), 98                                            - relatives, 3 
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Caractéristique  (résistance), 50, 51, 52-                   Erreurs (-accidentelles), 2, 13 

Circuit RLC (série), 103-                                            Erreurs (-grossières), 2 

Circuit RLC (parallèle), 113-                                     Erreurs (-systématiques), 1, 13 

Classe d’un appareil, 8, 31                                       Estimateur, 19  

Coefficient d’amortissement, 32-39, 49-                    Etalonnage, 31 

Coefficient de  perte, 87, 92                                      Etendue, 23 

Courbes (de répartition), 23                                        - méthode de l’-, 23 

Couples, 32, 45, 46, 47                                               Etoile, 31 

Excitation, 36-40, 148-156                                             - de lecture, 8 

                                                                                       - relative, 3 

F                                                                                    - Intervalle de confiance, 22 

Facteur de puissance, 68, 119- de qualité, 91-95 

128-146, 104-112                                                          J 

- de surtension, 111                                                       Joule (effet), 27 , 28 

- de surintensité, 114 

Filtre, 110                                                                      K 

Flux, 45, 149                                                                  Khi-deux (loi de), 20 

Fouccault, 74 

Fourier (série), 36, 57                                                   L, M 

Fréquence, 100, 118, 122                                            Magnétique (champ), 43, 147 

Fréquentiel, 37                                                             Maxwell (pont de), 85, 93 

Frottement, 47                                                              Méthode de, 103 

 

G                                                                                  Modulation, 124 

                                                                                     Moment, 45, 147 

Galvanomètre, 43                                                        Montage amont, 6, 7, 67 

Gauss, (distribution de), 14, 16                                   - Aval, 6, 7, 67 

 

H                                                                                  Mouvement du cadre, 51-52 

Hall (effet), 151                                                            Moyenne, 16, 56, 

 

Harmonique, 38                                                           N, O 

Haute fréquence, 123                                                 Ohmmètre, 60 

Homogènes, 3                                                            Optique, 51 
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Hystérésis, 153                                                           Oscillation, 33, 38-39, 49 

 

I                                                                                   P 

Impédance complexe, 103                                          Phasemètre, 160 

Incertitude absolue, 3, 4                                             Pont de 77 

- de codée, 9                                                              périodique, 32, 57 

- de classe, 8                                                             Pseudo-périodique 

Puissance active, 68 

 

Q                                                                                   Student (distribution de-),19  

Quadratique, 18                                                            Surtension, 111 

 

Q-mètre, 127-                                                               T 

R                                                                                   Taux de présence, 21 

Régime permanent, 36, 37                                            Thomson (pont de-), 81 

-transitoire, 36, 37 

Reluctance, 150, 151                                                    V 

Résistance, 10, 11, 12, 80, 81, 82                                Vitesse, 46 

Résonance, 102, 103-, 127-                                          Voltmètre, 54 

 

S                                                                                    W 

Sélectivité, 115                                                              Wattmètre, 63 

Sensibilité, 51, 52                                                          Wheatstone (pont de-), 80 

- de l’ampèremètre, 54 

- du voltmètre, 56                                                           X, Y, Z 

                                                                                      Zoom, 51 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 


